VA Project 658-21-102 01-20-2022 100% Submittal Version 01-01-21

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
00 01 10	Fire of Framing Sheets	00 20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	01-21
01 32 16.01	Architectural and Engineering CPM Schedules	03-20
01 32 16.13	Network Analysis Schedules - Major Construction Project Design-Bid-Build	03-20
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	03-20
01 33 23	Shop Drawings, Product Data, and Samples	05-17
01 35 26	Safety Requirements	07-20
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 29	Testing Laboratory Services	11-18
01 45 35	Special Inspections	03-19
01 57 19	Temporary Environmental Controls	01-21
01 74 19	Construction Waste Management	01-21
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Cx Requirements_COR	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
	DIVISION 05 - METALS	
05 51 00	Metal Stairs	01-21
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	Net sept speciment specime	11111
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC	02-20
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	02-20
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC Insulation	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11

VA Project 658-21-102 01-20-2022 100% Submittal Version 01-01-21

SECTION NO.	DIVISION AND SECTION TITLES	DATE
23 21 13	Hydronic Piping	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 37 00	Air Outlets and Inlets	02-20
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 27 26	Wiring Devices	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
	DIVISION 27 - COMMUNICATIONS	
27 10 00	Control, Communication and Signal Wiring	06-15
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 31 00	Fire Detection and Alarm	10-11

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	Title
G000	COVER SHEET
s100	PARTIAL ROOF PLANS
s300	GENERAL NOTES
s500	FRAMING DETAILS
A101	ROOF PLAN
A501	DETAILS
LS100	LIFE SAFETY PLAN
M000	MECHANICAL SYMBOLS AND ABBREVIATIONS
MD100	PHASE 1 - DUCTWORK DEMOLITION
MD101	PHASE 2 - DUCTWORK DEMOLITION
MD102	PHASE 1 - MECHANICAL ROOF DEMOLITION
MD103	PHASE 2 - MECHANICAL ROOF DEMOLITION
MH200	PHASE 1 - DUCTWORK
MH201	PHASE 2 - DUCTWORK
MP200	SUB BASEMENT - PIPING
MP201	LEVEL 01 - PIPING
M200	PHASE 1 - MECHANICAL ROOF PLAN
M201	PHASE 2 - MECHANICAL ROOF PLAN
М300	MECHANICAL COORDINATION PLAN
M500	MECHANICAL DETAILS
M501	MECHANICAL DETAILS
M600	MECHANICAL SCHEDULES
M601	MECHANICAL CONTROLS
E000	ELECTRICAL SYMBOLS AND ABBREVIATIONS
E100	LEVEL 1 - ELECTRICAL DEMOLITION
EP200	LEVEL 1 - POWER
EP201	ROOF - POWER
E500	ONE-LINE DIAGRAM
E600	ELECTRICAL DETAILS
	END

00 01 15 - 1

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

	1.1	SAFETY REQUIREMENTS
	1.2	GENERAL INTENTION
	1.3	STATEMENT OF BID ITEM(S) 2
1	. 4	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR
	1.5	CONSTRUCTION SECURITY REQUIREMENTS 2
	1.6	OPERATIONS AND STORAGE AREAS 5
	1.7	ALTERATIONS10
	1.8	DISPOSAL AND RETENTION
	1.9	PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT,
		UTILITIES, AND IMPROVEMENTS13
	1.10	RESTORATION
	1.11	PHYSICAL DATA14
	1.12	PROFESSIONAL SURVEYING SERVICES
	1.13	LAYOUT OF WORK
	1.14	AS-BUILT DRAWINGS15
	1.15	WARRANTY MANAGEMENT
	1.16	USE OF ROADWAYS19
	1.17	RESIDENT ENGINEER'S FIELD OFFICE24
	1.18	TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT24
	1.19	TEMPORARY USE OF EXISTING ELEVATORS

Upgra	n VA Medical Center nde/Replace HVAC Phase III n, Virginia	VA Project 658-21-102 01-20-2022 100% Submittal Front End Specs
1.20	TEMPORARY USE OF NEW ELEVATORS	25
1.21	TEMPORARY TOILETS	25
1.22	AVAILABILITY AND USE OF UTILITY SERVICES	26
1.23	NEW TELEPHONE EQUIPMENT	27
1.24	TESTS	27
1.25	INSTRUCTIONS	29
1.26	GOVERNMENT-FURNISHED PROPERTY Error!	Bookmark not defined.
1.27	RELOCATED ITEMS	30
1.28	STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS E	QUIPMENT31
1.29	CONSTRUCTION SIGN	31
1.30	SAFETY SIGN	31
1.31	PHOTOGRAPHIC DOCUMENTATION	31
1.32	FINAL ELEVATION Digital Images	31
1.33	HISTORIC PRESERVATION	

1.34 VA TRIRIGA CPMS Error! Bookmark not defined.

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for VA Project 658-21-102 Upgrade/Replace HVAC III required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of Specialized Engineering Solutions, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the COR in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

A. ITEM I, BASE BID: Contractor shall provide all labor, material, equipment, and qualified supervision necessary to perform work as described in the drawings and specifications for VA Project No. 658-21-102 Upgrade/Replace HVAC III. The project will provide Upgrade/Replace HVAC III in the Salem VAMC Warehouse (Bldg. 143) to include replacement of all ductwork, controls(DDC) and all other associated components associated with the air handling and distributions systems in order to provide a system that conforms to all VHA requirements with regards to layout, environmental conditions, traffic flow, and interaction with other supporting services. Project will include demolition of the existing AHU and ductwork and replacement with a new RTU and air distribution system. In addition, the Salem VAMC is currently designing a 1,500 sf addition to the existing warehouse.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to

inspection of their personal effects when entering or leaving the project site.

- 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

C. Guards: NOT USED

D. Key Control:

- 1. The General Contractor shall provide duplicate keys and lock combinations to the Contracting Officers Representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
- 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.

E. Document Control:

1. Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".

- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

F. Motor Vehicle Restrictions

- 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
- 2. The contractor shall ask for the current VAMC Memorandum concerning VEHICLE REGISTRATION, PARKING AND TRANSPORTATION. The contractor shall forward this information to all their employees, subcontractors, and suppliers that will be coming onto the Salem VAMC property.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of

the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as determined by the COR.
- E. Workers are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by the COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.

G. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To ensure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to ensure accomplishment of this work in successive phases mutually agreeable to COR and Contractor, as shown in the contract phasing plans.

- H. Building will be occupied during performance of work; but immediate areas of alterations will be vacated.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of

Veterans Affairs so that Medical Center operations will continue during the construction period.

- I. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- J. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by the COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of the COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11,

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia

> REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for additional requirements.

- 2. Contractor shall submit a request to interrupt any such services to the COR, in writing, fifteen (15) days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least thirty (30) calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- 7. Prior to commencement of work, Contractor, with the support of VA Shops, shall identity all sources of energy that may require an outage. Additionally, the Contractor shall identify and clearly mark breakers, switches, and valves to all utilities (electric, water, medical gas, etc.) indicating areas affected by closing or opening of the breaker, switch, or valve.
- K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or

Front End Specs

supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.

- L. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
 - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- M. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - 1. Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
 - 2. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian

blinds, shades, etc., required by drawings to be either reused or relocated, or both.

- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workers in executing work of this contract.
- D. Protection: Provide the following protective measures:

- 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
- 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by the COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated

or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workers, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

1.10 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be

reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workers to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA (NOT USED)

1.12 PROFESSIONAL SURVEYING SERVICES (NOT USED)

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the

lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

- E. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to the COR.
- F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To ensure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.

D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 WARRANTY MANAGEMENT

- A. Warranty Management Plan: Develop a warranty management plan which contains information relevant to FAR 52.246-21 Warranty of Construction in at least 30 days before the planned pre-warranty conference, submit four sets of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesman, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below must include due date and whether item has been submitted or was approved. Warranty information made available during the construction phase must be submitted to the Contracting Officer for approval prior to each monthly invoice for payment. Assemble approved information in a binder and turn over to the Government upon acceptance of the work. The construction warranty period will begin on the date of the project acceptance and continue for the product warranty period. A joint 4 month and 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contactor and the Contracting Officer. Include in the warranty management plan, but not limited to, the following:
 - Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the company of the Contractor, subcontractors, manufacturers or suppliers involved.
 - 2. Furnish with each warranty the name, address and telephone number of each of the guarantor's representatives nearest project location.

- 3. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers and for all commissioned systems such as fire protection and alarm systems, sprinkler systems and lightning protection systems, etc.
- 4. A list for each warranted equipment item, feature of construction or system indicating:
 - a. Name of item.
 - b. Model and serial numbers.
 - c. Location where installed.
 - d. Name and phone numbers of manufacturers and suppliers.
 - e. Name and phone numbers of manufacturers or suppliers.
 - f. Names, addresses and phone numbers of sources of spare parts.
 - g. Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
 - h. Starting point and duration of warranty period.
 - i. Summary of maintenance procedures required to continue the warranty in force.
 - j. Cross-reference to specific pertinent Operation and Maintenance manuals.
 - k. Organizations, names and phone numbers of persons to call for warranty service.
 - Typical response time and repair time expected for various warranted equipment.

- 5. The plans for attendance at the 4 and 9-month post construction warranty inspections conducted by the government.
- 6. Procedure and status of tagging of all equipment covered by extended warranties.
- 7. Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons.
- B. Performance Bond: The Performance Bond must remain effective throughout the construction period
 - 1. In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.
 - 2. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the contractor's expenses, the Contracting Officer will have the right to recoup expenses from the bonding company.
 - 3. Following oral or written notification of required construction warranty repair work, the Contractor shall respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.
- C. Pre-Warranty Conference: Prior to contract completion, and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this section. Communication procedures for Contractor notification of construction warranty defects, priorities with respect to the

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia

type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty will be established/ reviewed at this meeting. In connection with these requirements and at the time of the Contractor's quality control completion inspection, furnish the name, telephone number and address of a licensed and bonded company which is authorized to initiate and pursue construction warranty work action on behalf of the Contractor. This point of contract will be located within the local service area of the warranted construction, be continuously available and be responsive to Government inquiry on warranty work action and status. This requirement does not relieve the Contractor of any of its responsibilities in conjunction with other portions of this provision.

D. Contractor's Response to Construction Warranty Service Requirements:

Following oral or written notification by the Contracting Officer, the Contractor shall respond to construction warranty service requirements in accordance with the "Construction Warranty Service Priority List" and the three categories of priorities listed below. Submit a report on any warranty item that has been repaired during the warranty period. Include within the report the cause of the problem, date reported, corrective action taken, and when the repair was completed. If the Contractor does not perform the construction warranty within the timeframe specified, the Government will perform the work and back charge the construction warranty payment item established.

1. First Priority Code 1. Perform onsite inspection to evaluate situation, and determine course of action within 4 hours, initiate work within 6 hours and work continuously to completion or relief.

- 2. Second Priority Code 2. Perform onsite inspection to evaluate situation, and determine course of action within 8 hours, initiate work within 24 hours and work continuously to completion or relief.
- 3. Third Priority Code 3. All other work to be initiated within 3 work days and work continuously to completion or relief.
- 4. The "Construction Warranty Service Priority List" is as follows:

Code 1-Life Safety Systems

- a. Fire suppression systems.
- b. Fire alarm system(s).

Code 1-Air Conditioning Systems

- a. Air conditioning leak in part of the building, if causing damage.
- b. Air conditioning system not cooling properly.

Code 1 Doors

- a. Overhead doors not operational, causing a security, fire or safety problem.
- b. Interior, exterior personnel doors or hardware, not functioning properly, causing security, fire or safety problem.

Code 3-Doors

- a. Overhead doors not operational.
- b. Interior/exterior personnel doors or hardware not functioning properly.

Code 1-Electrical

- a. Power failure (entire area or any building operational after 1600 hours).
- b. Security lights.
- c. Smoke detectors.

Code 2-Electrical

- a. Power failure (no power to a room or part of building).
- b. Receptacles and lights not operational (in a room or part of building).

Code 3-Electrical

a. Exterior lights not operational.

Code 1-Gas

a. Leaks and pipeline breaks.

Code 1-Heat

a. Power failure affecting heat.

Code 1-Plumbing

- a. Hot water heater failure.
- b. Leaking water supply pipes.

Code 2-Plumbing

- a. Flush valves not operating properly
- b. Fixture drain, supply line or any water pipe leaking.
- c. Toilet leaking at base.

Code 3- Plumbing

a. Leaky faucets.

Code 3-Interior

a. Floors damaged.

- b. Paint chipping or peeling.
- c. Casework damaged.

Code 1-Roof Leaks

a. Damage to property is occurring.

Code 2-Water (Exterior)

a. No water to facility.

Code 2-Water (Hot)

a. No hot water in portion of building listed.

Code 3

- a. All work not listed above.
- E. Warranty Tags: At the time of installation, tag each warranted item with a durable, oil and water-resistant tag approved by the Contracting Officer. Attach each tag with a copper wire and spray with a silicone waterproof coating. Also submit two record copies of the warranty tags showing the layout and design. The date of acceptance and the QC signature must remain blank until the project is accepted for beneficial occupancy. Show the following information on the tag.

Type of product/material	
Model number	
Serial number	
Contract number	
Warranty period from/to	
Inspector's signature	
Construction Contractor	
Address	
Telephone number	
Warranty contact	
Address	
Telephone number	
Warranty response time priority code	

1.16 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.17 RESIDENT ENGINEER'S FIELD OFFICE (NOT USED)

1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - 1. Permission to use each unit or system must be given by the COR in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted.

 Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned.

 Vibrations must be eliminated.
 - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.

- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.19 TEMPORARY USE OF EXISTING ELEVATORS

A. Contractor will not be allowed the use of existing elevators.

Outside type hoist shall be used by Contractor for transporting materials and equipment.

1.20 TEMPORARY USE OF NEW ELEVATORS (NOT USED)

1.21 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workers) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by the COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.22 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
 - a. Steam is available at no cost to Contractor.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and

pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.

- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR's discretion) of use of water from Medical Center's system.
- G. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished and paid by the Contractor at Contractor's expense.

1.23 NEW TELEPHONE EQUIPMENT (NOT USED)

1.24 TESTS

A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.

- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.25 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component

Front End Specs

parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.27 RELOCATED EQUIPMENT / ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for

assembly and installation of relocated equipment; and leave such equipment in proper operating condition.

- F. All service lines for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.
- 1.28 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (NOT USED)
- 1.29 CONSTRUCTION SIGN (NOT USED)
- 1.30 SAFETY SIGN (NOT USED)
- 1.31 PHOTOGRAPHIC DOCUMENTATION (NOT USED)
- 1.32 FINAL ELEVATION DIGITAL IMAGES (NOT USED)
- 1.33 HISTORIC PRESERVATION (NOT USED)

- - - E N D - - -

SECTION 01 32 16.01 ARCHITECTURAL AND ENGINEERING CPM SCHEDULES

PART 1- GENERAL

1.1 DESCRIPTION:

The Architect/Engineer of Record (A/E) shall develop a Critical Path Method (CPM Schedule) plan and schedule demonstrating fulfillment of the contract requirements as designated in VA PG 18-15, shall keep the CPM up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract. Conventional Critical Path Method (CPM) Precedence Diagramming Method (PDM) technique will be utilized to satisfy both time and cost applications. All schedule data and reports required under this specification section shall be based upon regular total float, not relative total float schedules.

1.2 A/E'S REPRESENTATIVE:

- A. The A/E shall designate an authorized representative in the firm who will be responsible for the preparation of the CPM Schedule, review and report progress of the project with and to the Project Manager and the Contracting Officer.
- B. The A/E's representative shall have direct project control and complete authority to act on behalf of the A/E in fulfilling the requirements of this specification section and such authority shall not be interrupted throughout the duration of the project.

1.3 A/E'S SCHEDULE PREPARATION:

- A. To prepare the CPM Schedule, and subsequent periodic updates, which reflects the A/E's project plan, the A/E shall either designate a qualified individual within their firm or engage an independent CPM consultant (CPM Developer) who is skilled in the time and cost application of scheduling using (PDM) network techniques for Design projects, the cost of which is included in the A/E's bid.
- B. Within 10 calendar days after award of the contract, the A/E shall submit to the Contracting Officer:
 - 1. The name of the CPM Developer.
 - 2. The Computer Software to be utilized.

- 3. Sufficient information to show that the CPM Developer has the qualifications to meet the requirements specified in the preceding paragraph.
- C. The Contracting Officer has the right to approve or disapprove the designated CPM developer, and will notify the A/E of the VA decision within seven calendar days from receipt of information. In case of disapproval, the A/E shall resubmit another CPM Developer within 10 calendar days for renewed consideration. The A/E must have their CPM Developer approved prior to submitting the Initial CPM Schedule

1.4 COMPUTER PRODUCED SCHEDULES

- A. The A/E shall provide to the VA Project Manager, Contracting Officer and CPM Schedule Analyst, monthly computer processing of all computer-produced time/cost schedules and reports generated from monthly project updates. A hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data. These reports shall be submitted with and substantively support the A/E's monthly payment request. The Project Manager shall identify the different report formats that the A/E shall provide based upon the monthly schedule updates.
- B. The A/E is responsible for the correctness and timeliness of the computer-produced reports. The A/E is also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA shall report errors in computer-produced reports to the A/E's representative within ten calendar days from receipt of reports. The A/E will reprocess the computer-produced reports and associated compact disk(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE CPM SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the A/E shall submit for the Project Manager and Contracting Officer's review; three blue line copies of the complete CPM Schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file, (PDM) format. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the

to, activity/event ID, duration, predecessor and successor relationships, area code, description, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-tostart and start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The A/E shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the CPM Schedule. The Contracting Officer's separate approval of the CPM Schedule shall not excuse the A/E of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working CPM Schedule shall reflect the A/E's approach to scheduling the complete project. The final CPM Schedule in its original form shall contain no contract modifications or changes which may have been incurred during the final CPM Schedule development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final CPM Schedule has been approved. The A/E should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in

computer-produced schedule shall contain as a minimum, but not limited

B. Within 30 calendar days after receipt of the complete project CPM Schedule, the Project Manager of Contracting Officer will do one or both of the following:

accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- 1. Notify the A/E concerning his actions, opinions, and objections.
- 2. A meeting with the A/E at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the A/E shall revise and shall submit three blue line copies of the revised CPM Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be

reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

C. The approved baseline CPM Schedule and the corresponding computerproduced schedule(s) shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/EVENT COST DATA

The A/E shall cost load all work activities. The cost loading shall reflect the appropriate level of effort of the work activities/events. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The A/E shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. In the event of disapproval, the A/E shall revise and resubmit in accordance with Article, THE COMPLETE PROJECT CPM SCHEDULE SUBMITTAL. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.

1.7 CPM SCHEDULE REQUIREMENTS

- A. Show on the CPM Schedule the sequence and interdependence of work activities/events required for complete performance of all items of work. In preparing the CPM Schedule, the A/E shall:
 - 1. Exercise sufficient care to produce a clear, legible and accurate CPM Schedule.
 - 2. Show the following on each work activity/event:
 - a. Activity/Event ID number.
 - b. Concise description of the work represented by the activity/event. (35 characters or less including spaces preferred).
 - c. Performance responsibility.
 - d. Duration (in work days.)
 - e. Cost (in accordance with Article, ACTIVITY/EVENT COST DATA of this section and less than \$99,999 per activity).
 - f. Manpower required (average number of men per day).

- 3. Show activities/events as:
 - a. A/E's time required for submittal of drawings.
 - b. VA review and approval of drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Medical Center utilities, delivery of Government furnished equipment, project phasing and any other specification requirements.
- 4. Show activities/events for work for each discipline.
- 5. Break up the work into activities/events of duration no longer than 20 work days each, except for which the Project Manager and/or the Contracting Officer may approve the showing of a longer duration.
- 6. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 7. Uniquely number each activity/event with numbers ranging from 1 to 99998 only. The CPM Schedule should be generally numbered in such a way to reflect disciplines, phase or location of the work.
- B. Submit the following supporting data in addition to the CPM Schedule, activity/event ID schedule and electronic file (s). Failure of the A/E to include this data will delay the review of the submittal until the Contracting Officer is in receipt of the missing data:
 - 1. The proposed number of working days per week.
 - 2. The holidays to be observed during the life of the contract (by day, month, and year).
- C. To the extent that the CPM Schedule or any revised CPM Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the Contracting Officer. Failure to include any element of work required for the performance of this contract shall not excuse the A/E from completing all work required within any applicable completion date of each phase regardless of the Contracting Officer's approval of the CPM Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA (Project Manager and CPM Schedule Analyst) an electronic file(s) containing one file of the data required.

1.8 PAYMENT TO THE A/E:

- A. Monthly, the A/E shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data. The A/E is entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated computer-produced calendar-dated schedule unless, in special situations, the Contracting Officer permits an exception to this requirement.
- B. When the A/E fails or refuses to furnish to the Contracting Officer the information, which, in the sole judgment of the Contracting Officer, is necessary for processing the monthly progress payment, the A/E shall not be deemed to have provided an estimate and supporting schedule data upon which progress payment may be made.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly progress meetings shall be held on dates mutually agreed to by the Project Manager and/or Contracting Officer and the A/E. The A/E shall update the project schedule and all other data required by this section shall be accurately filled in and completed prior to the monthly progress meeting. The A/E shall provide this information to VA three work days in advance of the progress meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - 2. Remaining duration, required to complete each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the CPM Schedule and computer-produced schedules. Changes in activity/event sequence and duration which have been made pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 4. Percentage for completed and partially completed activities/events.
 - 5. Logic and duration revisions required by this section of the specifications.
 - 6. Activity/event duration and percent complete shall be updated independently.
- B. The A/E shall submit a narrative report as a part of his monthly review and update, in a form agreed upon by the A/E and the Contracting

- Officer. The narrative report shall include a description of problem areas; current and anticipated delaying factors and their estimated impact on performance of other activities/events and completion dates; and an explanation of corrective action taken or proposed.
- C. After completion of the joint review and the Contracting Officer's approval of all entries, the A/E shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- D. After completing the monthly schedule update, the A/E's scheduling person shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the A/E and Project Manager for the contract change(s). When there is a disagreement on logic and/or durations, the CPM Schedule update shall use the schedule logic and/or durations provided and approved by the Project Manager. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final CPM Schedule is approved, the A/E must recreate all manual progress payment updates on this approved CPM Schedule and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- E. After VA acceptance and approval of the final CPM Schedule, and after each monthly update, the A/E shall submit to the Contracting Officer three blue line copies of a revised complete CPM Schedule showing all completed and partially completed activities/events, contract changes and logic changes made on the intervening updates or at the first update on the final diagram. The Contracting Officer may elect to have

the A/E do this on a less frequent basis, but it shall be done on a quarterly basis as a minimum.

1.10 RESPONSIBILITY FOR COMPLETION

- A. Whenever it becomes apparent from the current monthly progress review meeting or the monthly schedule that phasing or contract completion dates will not be met, the A/E shall execute some or all of the following remedial actions:
 - 1. Increase manpower in such quantities and discipline as necessary to eliminate the backlog of work.
 - Increase the number of working hours to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the A/E shall notify and obtain approval from the Project Manager and/or the Contracting Officer for the proposed schedule changes. If such actions are approved, the CPM revisions shall be incorporated by the A/E into the CPM Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO CPM SCHEDULE AND SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated computer-produced schedule, the A/E will submit a revised CPM Schedule
- B. Contracting Officer's approval for the revised CPM Schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the CPM Schedule resulting from contract changes will be included in the proposal for changes in work as specified in Article, FAR 52.243 -4 (CHANGES), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the CPM Schedule not resulting from contract changes is the responsibility of the A/E .

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the A/E shall be supported with a justification, CPM data and

supporting evidence as the Contracting Officer may deem necessary for determination as to whether or not the A/E is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the A/E has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computer-produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the A/E in writing of the Contracting Officer's decision.
- C. The A/E shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under Article, FAR 52.243 -4 (CHANGES). The A/E shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved CPM Schedule.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

1.13 PROJECT DESIGN SCHEDULE RISK ANALYSIS/MITIGATION PLAN

- A. Schedule Risk Analysis The A/E shall conduct the statistical schedule risk analysis based on the above detailed construction activities in the Day 1 approved diagram, identifying major schedule risk areas and recommended risk mitigation plans as outlined below.
- B. The risk analysis shall be conducted by a person or firm skilled in the statistical method of schedule risk analysis based on the (PDM) CPM Schedule techniques for major projects, preferably in the major health

- care related projects. The cost of this service shall be included in the A/E's proposal.
- C. The Contracting Officer has the right to approve or disapprove the Person or firm designated to perform the risk analysis.

1.14 RISK ANALYSIS FORMAT / REQUIREMENTS / SUBMITALS

- A. Risk Analysis Software / Format Within 45 calendar days after receipt of Notice to Proceed, the A/E shall submit for the Contracting Officer's review; a Risk Analysis software to be utilized, the method of performing the analysis, the format of presenting the data and the reports for VA approval.
- B. Conduct Risk Analysis / Submittals Based on the approved software / format, the consultant shall perform statistical risk analysis on the detailed approved Day 1 diagram. The A/E shall review and utilize any previous Risk analysis based on the "semi-detailed" schedule logic and schedule to ensure the continuity of previous schedule risk analysis. The A/E's project manager shall identify the major schedule risk areas and possible risk mitigation strategy/plan and record it in a narrative format, with electronic file submission to VA. The risk analysis exercise shall be performed or updated at least on a quarterly basis or as directed by the VA Contracting officer.
- C. The submittal shall include three copies of a computer-produced risk analysis results, predicting the various meaningful probability curves of achieving the contract schedules. It shall also include a detailed narrative list of all major and minor potential and specific schedule and cost risk areas, and a A/E 's recommendations of mitigating the identified risks which must be addressed by the VA Project and Resident engineer teams to maintain the contract schedule.

---END---

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule) and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review, and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling

services. These representative samples shall be of similar size and scope.

B. The Contracting Officer has the right to approve or disapprove the proposed consultant and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also be responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review: three

COMPLETION.

VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

blue line copies of the interim schedule on sheets of paper 765×1070 mm (30 \times 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float/slack. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this

B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:

update, and in accordance with Article, ADJUSTMENT OF CONTRACT

- 1. Notify the Contractor concerning his actions, opinions, and objections.
- 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- D. The Complete Project Schedule shall contain enough work activity/event details for the CO/COR to monitor the contract period of performance.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 -Article 71 Including NAS-CPM for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION).

- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance, and operation manuals, instructions, and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five workdays at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.

- 3. Break up the work into activities/events of a duration no longer than 20 workdays each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete, and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 workdays.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase, or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit an application and certificate for payment using the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 Article 71 Including NAS-CPM for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three workdays in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - 2. Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.

- 6. Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance with the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify

any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - 1. Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are

shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.

- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- 3. The schedule does not represent the actual prosecution and progress of the project.
- 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting

Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in workdays) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month-by-month basis.

- - - E N D - - -

Page intentionally left blank

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged. Color

Salem VA Medical Center
Upgrade/Replace HVAC Phase III
Salem, Virginia

VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and (MSDS) concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents but which have been omitted from the submittal register.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The VA will provide the initial submittal register in electronic format. See submittal register 01 22 23.01 and Section 1.6 SUBMITTAL FORMAT AND TRANSMISSION (ELECTRONIC DOCUMENT SUBMITTAL SERVICE). The submittal register will reside within this service

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal. Allow additional review and processing time if submitting more than 5 submittals in a day.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal, in PDF (electronic) format, as a single file. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title and location.
 - 2. Construction contract number.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

- 3. Date of the drawings and revisions.
- 4. Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
- 5. List specification section with paragraph number and sheet number of the contract drawings by which the submittal is required.
- 6. When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18-R1, to indicate the first resubmission.
- 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on submittal transmittal form to certify that submittal meets contract requirements is to be similar to:

CONTRACTOR	
(Firm Name)	I
 Approved 	
Approved with corrections as noted on submittal data and/or	ı
attached sheets(s)	I
l	I
SIGNATURE:	
TITLE:	
DATE:	

1.6 SUBMITTAL FORMAT AND TRANSMISSION (ELECTRONIC DOCUMENT SUBMITTAL SERVICE)

- A. All documents transmitted for purposes of administration of the contract are to be in electronic (PDF) format and transmitted via an Internet-based submittal service that receives, logs and stores documents, provides electronic stamping and signatures, and notifies addressees via email.
 - 1. Internet-based submittal service shall be used for transmittal of all submittals, request for information (RFI), progress documentation, contract modification documents (e.g. change proposals, change orders), certified payrolls, daily reports, test reports, and any other document the COR wishes to make part of the project record.
 - 2. Contractor and Architect are required to use this service.

- It is Contractor's responsibility to submit documents in PDF format
- 4. Subcontractors, suppliers, and Architect's consultants are to be permitted to use the service at no extra charge.
- 5. Users of the service need an email address, Internet access, and PDF review software that includes ability to mark up and apply electronic stamps (such as Adobe Acrobat, www.adobe.com, or Bluebeam PDF Revu, www.bluebeam.com), unless such software capability is provided by the service provider.
- 6. Paper document transmittals will not be reviewed; emailed PDF documents will not be reviewed.
- 7. All other specified submittal and document transmission procedures apply, except that electronic document requirements do not apply to samples or color selection charts.
- B. Cost: The cost of the service is to be paid for by the Contractor.

 Contractor shall include the cost of the service in the contract price.
- C. Ownership: Set up ownership of the electronic submittal service account such that the Government is the sole owner and has full rights to the account. Coordinate with the Contracting Officer's Representative to fulfill this requirement.
- D. Submittal Service: The selected service is:
 - 1. Submittal Exchange (tel: 1-800-714-0024):

www.submittalexchange.com.

- E. Training: Selected service shall include web-based training sessions for Government, Contractor, and A/E personnel.
- F. Project Closeout: The Government shall determine when to terminate the service for the project. The Contractor shall provide, from the selected internet-based service, archived copies of all files to the Government as part of closeout.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.

- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals, if less than 5 submittals are submitted in a day. VA review period is 20 working days for submittals if 5 or more submittals are submitted in a single day.
- E. VA review period is 10 working days for RFIs.

- F. The VA will return submittals to the Contractor with the following notations:
 - 1. "Approved": authorizes the Contractor to proceed with the work covered.
 - 2. "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS
1.2	DEFINITIONS 4
1.3	REGULATORY REQUIREMENTS6
1.4	ACCIDENT PREVENTION PLAN (APP)
1.5	ACTIVITY HAZARD ANALYSES (AHAs)
1.6	PRECONSTRUCTION CONFERENCE
1.7 (CP)	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" 16
1.8	TRAINING
1.9	INSPECTIONS
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS19
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)
1.12	INFECTION CONTROL
1.13	TUBERCULOSIS SCREENING
1.14	FIRE SAFETY
1.15	ELECTRICAL34
1.16	FALL PROTECTION
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS
1.18	EXCAVATION AND TRENCHES

Upgrade	VA Medical Center e/Replace HVAC Phase III Virginia		Project 658-319 01-20-2022 100% Submittal ront-End Specs
1.19	CRANES		41
1.20	CONTROL OF HAZARDOUS ENERGY	(LOCKOUT/TAGOUT)	42
1.21	CONFINED SPACE ENTRY		42
1.22	WELDING AND CUTTING		43
1.23	LADDERS		43

1.24 FLOOR & WALL OPENINGS44

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):
 - A10.1-2011.......Pre-Project & Pre-Task Safety and Health
 Planning
 - A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites
 - A10.38-2013.....Basic Elements of an Employer's Program to
 Provide a Safe and Healthful Work
 Environment American National Standard
 Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 - E84-2013......Surface Burning Characteristics of Building
 Materials
- D. The Facilities Guidelines Institute (FGI):
 - FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities
- E. National Fire Protection Association (NFPA):
 - 10-2013......Standard for Portable Fire Extinguishers
 - 30-2012......Flammable and Combustible Liquids Code
 - 51B-2014......Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2014National Electrical Code		
70B-2013Recommended Practice for Electrical Equipment Maintenance		
70E-2015Standard for Electrical Safety in the Workplace		
99-2012Health Care Facilities Code		
241-2013Standard for Safeguarding Construction, Alteration, and Demolition Operations		
F. The Joint Commission (TJC)		
TJC ManualComprehensive Accreditation and Certification Manual		
G. U.S. Nuclear Regulatory Commission		
10 CFR 20Standards for Protection Against Radiation		
H. U.S. Occupational Safety and Health Administration (OSHA):		
29 CFR 1904Reporting and Recording Injuries & Illnesses		
29 CFR 1910Safety and Health Regulations for General Industry		
29 CFR 1926Safety and Health Regulations for Construction Industry		
CPL 2-0.124Multi-Employer Citation Policy		

1.2 DEFINITIONS:

I. VHA Directive 2005-007

A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over

occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.

- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:

No impact - near miss incidents that should be investigated but are not required to be reported to the VA;

Minor incident/impact - incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;

Moderate incident/impact - Any work-related injury or illness that results in:

- 1. Days away from work (any time lost after day of injury/illness onset);
 - 2. Restricted work;
 - 3. Transfer to another job;

- 4. Medical treatment beyond first aid;
- 5. Loss of consciousness;
- 6. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
- 7. any incident that leads to major equipment damage (greater than \$5000).

These incidents must be investigated and are required to be reported to the VA;

Major incident/impact - Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

F. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern

except with specific approval and acceptance by the Contracting Officer Representative (COR).

1.4 ACCIDENT PREVENTION PLAN (APP):

A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.

B. The APP shall be prepared as follows:

- 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
- 2. Address both the Prime Contractors and the subcontractors work operations.
- 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
- 4. Address all the elements/sub-elements and in order as follows:
 - a. SIGNATURE SHEET. Title, signature, and phone number of the following:

- 1) Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
- 2) Plan approver (company/corporate officers authorized to obligate the company);
- 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - A statement of the employer's ultimate responsibility for the implementation of his SOH program;

- 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- 4) Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;
- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if
 known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.

- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)
- g. SAFETY AND HEALTH INSPECTIONS.
 - 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
 - 2) Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the COR:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigation reports;

- 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation(housekeeping, drinking water, toilets);
 - 8) Night operations and lighting;
 - 9) Hazard communication program;
 - 10) Welding/Cutting "Hot" work;
 - 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
 - 12) General Electrical Safety;
 - 13) Hazardous energy control (Machine LOTO);
 - 14) Site-Specific Fall Protection & Prevention;
 - 15) Excavation/trenching;
 - 16) Asbestos abatement;

- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the COR, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the COR. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work

in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the COR and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government

Designated Authority (GDA) for acceptance prior to the start of that work activity.

- 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the COR or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA.

The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the COR.

1.6 PRECONSTRUCTION CONFERENCE:

- A. A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 15 working days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP):

A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall

- designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated
 Representative/alternate will maintain a presence on the site
 during construction operations in accordance with FAR Clause
 52.236-6: Superintendence by the Contractor. CPs will maintain
 presence during their construction activities in accordance with
 above mentioned clause. A listing of the designated SSHO and all
 known CPs shall be submitted prior to the start of work as part
 of the APP with the training documentation and/or AHA as listed
 in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through

training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class within the past 5 years and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.

- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.

- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc...

 Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to the COR.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the COR as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel

injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the COR determines whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent) and provide the report to the COR within 5 calendar days of the accident. The COR will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the COR monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated subcontractors for each month will be provided to the COR monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the COR as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the COR in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the

requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.

- 2. Safety glasses unless written authorization is given by the COR in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the COR in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the COR before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the cor. The Infection Control Permits

will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class III, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:

1. Class I requirements:

- a. During Construction Work:
 - 1) Notify the COR.
 - 2) Execute work by methods to minimize raising dust from construction operations.
 - 3) Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.
- b. Upon Completion:
 - 1) Clean work area upon completion of task
 - 2) Notify the COR.

2. Class II requirements:

- a. During Construction Work:
 - 1) Notify the COR.
 - 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.

6) Remove or isolate HVAC system in areas where work is being performed.

b. Upon Completion:

- 1) Wipe work surfaces with cleaner/disinfectant.
- 2) Contain construction waste before transport in tightly covered containers.
- 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed
- 5) Notify the COR.

3. Class III requirements:

- a. During Construction Work:
 - 1) Obtain permit from the COR.
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins.

 Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which

must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.

- 5) Contain construction waste before transport in tightly covered containers.
- 6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the COR and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the COR.

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the COR.
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and

sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.

- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- 7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the COR with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.

- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the COR.
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - 1. Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - 2. Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) - Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping. Paint outside of the partition to provide a cleanable surface to the non-construction side of the barrier. See specification section 09 91 00 Painting.
 - c. Class III & IV Seal all penetrations in existing barrier airtight

- d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
- e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

- Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
- 2. Barrier Doors: Self Closing one-hour fire-rated solid core wood in steel frame, painted
- 3. Dust proof one-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units.

 Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced;
 Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches \times 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product

- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - 1. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as

required to maintain clean work areas directly outside construction area at all times.

- 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
- 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.

- Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings.
 HEPA filtration on intake vents is required where dust may be introduced.
- Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.

- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police, and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and

adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, % hour fire/smoke rated doors with self-closing devices.

- 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed through-penetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- 4. Paint outside of the partition to provide a cleanable surface to the non-construction side of the barrier. See specification section 09 91 00 Painting.
- E. Temporary Heating and Electrical: Install, use, and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to COR.

- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with COR. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Office at least 48 hours in advance.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

R. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards or is infeasible due to equipment design or operational limitations is energized work permitted. The COR with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.

- 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the COR.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the COR and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-

connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30- ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2)..

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.

- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - 1. Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for

determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.

- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the COR prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the COR. The permit shall be maintained onsite and the first section of the permit shall include the following:
 - 1. Estimated start time & stop time
 - 2. Specific location and nature of the work.
 - 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - 4. Indication of whether soil or concrete removal to an offsite location is necessary.
 - 5. Indication of whether soil samples are required to determined soil contamination.
 - 6. Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.

7. Indication of review of site drawings for proximity of utilities to digging/drilling.

The second section of the permit for excavations greater than five feet in depth shall include the following:

- 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetrometer will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 Type B, greater than 1.5 Tons/FT2 Type A without condition to reduce to Type B).
- 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
- 3. Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
- 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient

oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.

- C. As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - 1. The planned dig site will be outlined/marked in white prior to locating the utilities.
 - 2. Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 3. 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- D. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- E. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the

provisions contained with Subpart CC are effective and there is no "Phase In" date.

- C. A detailed lift plan for all lifts shall be submitted to the COR 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the COR.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B.

Coordinate with the COR. Obtain permits from the COR at least 48hours in advance. Designate contractor's responsible projectsite fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.

G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a loadbearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be

immediately cut out. No hole or opening shall be left unattended unless covered.

- 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
- 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

Page intentionally left blank

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabc.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA	American Gear Manufacturers Association, Inc. http://www.agma.org
АН	American Hort
	https://www.americanhort.org
AHAM	Association of Home Appliance Manufacturers http://www.aham.org
AIA	American Institute of Architects
11111	http://www.aia.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute <pre>http://www.steel.org</pre>
AITC	American Institute of Timber Construction <pre>https://aitc-glulam.org</pre>
AMCA	Air Movement and Control Association, Inc. http://www.amca.org
ANSI	American National Standards Institute, Inc. http://www.ansi.org
APA	The Engineered Wood Association <pre>http://www.apawood.org</pre>
ARI	Air-Conditioning and Refrigeration Institute http://www.ari.org
ARPM	Association for Rubber Product Manufacturers
	https://arpm.com
ASABE	American Society of Agricultural and Biological Engineers https://www.asabe.org
ASCE	American Society of Civil Engineers <pre>http://www.asce.org</pre>

ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org
ASME	American Society of Mechanical Engineers http://www.asme.org
ASSE	American Society of Sanitary Engineering International http://www.asse-plumbing.org
ASTM	American Society for Testing and Materials International http://www.astm.org
AWI	Architectural Woodwork Institute <pre>https://www.awinet.org</pre>
AWS	American Welding Society <pre>https://www.aws.org</pre>
AWWA	American Water Works Association <pre>https://www.awwa.org</pre>
ВНМА	Builders Hardware Manufacturers Association https://www.buildershardware.com
BIA	The Brick Industry Association <pre>http://www.gobrick.com</pre>
CAGI	Compressed Air and Gas Institute <pre>https://www.cagi.org</pre>
CGA	Compressed Gas Association, Inc. https://www.cganet.com
CI	The Chlorine Institute, Inc. <pre>https://www.chlorineinstitute.org</pre>
CISCA	Ceilings and Interior Systems Construction Association https://www.cisca.org
CISPI	Cast Iron Soil Pipe Institute <pre>https://www.cispi.org</pre>

CLFMI	Chain Link Fence Manufacturers Institute https://www.chainlinkinfo.org
CPA	Composite Panel Association
	https://www.compositepanel.org
CPMB	Concrete Plant Manufacturers Bureau https://www.cpmb.org
CRA	California Redwood Association <pre>http://www.calredwoods.org</pre>
CRSI	Concrete Reinforcing Steel Institute <pre>https://www.crsi.org</pre>
CTI	Cooling Technology Institute <pre>https://www.cti.org</pre>
DHA	Decorative Hardwoods Association https://www.decorativehardwood.org
DHI	Door and Hardware Institute <pre>https://www.dhi.org</pre>
EGSA	Electrical Generating Systems Association http://www.egsa.org
EEI	Edison Electric Institute <pre>https://www.eei.org</pre>
EPA	United States Environmental Protection Agency https://www.epa.gov
ETL	ETL Testing Services <pre>http://www.intertek.com</pre>
FAA	Federal Aviation Administration <pre>https://www.faa.gov</pre>
FCC	Federal Communications Commission <pre>https://www.fcc.gov</pre>

FPS	Forest Products Society
	http://www.forestprod.org
GANA	Glass Association of North America
	http://www.glasswebsite.com
FM	Factory Mutual Global Insurance
	https://www.fmglobal.com
GA	Gypsum Association
	https://gypsum.org
GSA	General Services Administration
	https://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org
ICC	International Code Council
	https://shop.iccsafe.org
ICEA	Insulated Cable Engineers Association
	https://www.icea.net
ICAC	Institute of Clean Air Companies
	http://www.icac.com
IEEE	Institute of Electrical and Electronics Engineers
	https://www.ieee.org\
IGMA	Insulating Glass Manufacturers Alliance
	https://www.igmaonline.org
IMSA	International Municipal Signal Association http://www.imsasafety.org
MBMA	Metal Building Manufacturers Association
	https://www.mbma.com
MSS	Manufacturers Standardization Society of the Valve and Fittings
	<pre>Industry http://msshq.org</pre>

VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

NAAMM National Association of Architectural Metal Manufacturers

https://www.naamm.org

PHCC Plumbing-Heating-Cooling Contractors Association

https://www.phccweb.org

NBS National Bureau of Standards

See - NIST

NBBI The National Board of Boiler and Pressure Vessel Inspectors

https://www.nationalboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

https://www.nema.org

NFPA National Fire Protection Association

https://www.nfpa.org

NHLA National Hardwood Lumber Association

https://www.nhla.com

NIH National Institute of Health

https://www.nih.gov

NIST National Institute of Standards and Technology

https://www.nist.gov

NELMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

(See CPA, Composite Panel Association)

NSF National Sanitation Foundation

http://www.nsf.org

OSHA Occupational Safety and Health Administration

Department of Labor https://www.osha.gov

PCA	Portland Cement Association <pre>https://www.cement.org</pre>
PCI	Precast Prestressed Concrete Institute <pre>https://www.pci.org</pre>
PPI	Plastics Pipe Institute <pre>https://www.plasticpipe.org</pre>
PEI	Porcelain Enamel Institute <pre>http://www.porcelainenamel.com</pre>
PTI	Post-Tensioning Institute <pre>http://www.post-tensioning.org</pre>
RFCI	Resilient Floor Covering Institute <pre>https://www.rfci.com</pre>
RIS	Redwood Inspection Service (See Western Wood Products Association)
	https://www.wwpa.org
SCMA	Southern Cypress Manufacturers Association http://www.cypressinfo.org
SDI	Steel Door Institute <pre>http://www.steeldoor.org</pre>
SJI	Steel Joist Institute <pre>https://www.steeljoist.org</pre>
SMACNA	Sheet Metal & Air-Conditioning Contractors' National Association <pre>https://www.smacna.org</pre>
SSPC	The Society for Protective Coatings <pre>https://www.sspc.org</pre>
STI	Steel Tank Institute <pre>https://www.steeltank.com</pre>
SWI	Steel Window Institute <pre>https://www.steelwindows.com</pre>

VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

TCNA	Tile Council of North America
	https://www.tcnatile.com
TEMA	Tubular Exchanger Manufacturers Association
	<pre>http://www.tema.org</pre>
TPI	Truss Plate Institute
	https://www.tpinst.org
UBC	The Uniform Building Code
	(See ICC)
UL	Underwriters' Laboratories Incorporated
	https://www.ul.com
ULC	Underwriters' Laboratories of Canada
	https://www.ulc.ca
WCLB	West Coast Lumber Inspection Bureau
	http://www.wclib.org
WDMA	Window and Door Manufacturers Association
	https://www.wdma.com
WRCLA	Western Red Cedar Lumber Association
	https://www.realcedar.com
WWPA	Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

Page intentionally left blank

01 42 19 - 10

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB) or Design-Build (DB) construction projects. This section can be used for both project types.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - 1. D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - 2. E329 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the [Applicable CQC Control Phase (Preparatory, Initial, or Follow-Up)]: [Applicable Specification section] naming convention.

- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. CQC Plan
 - c. Additional Requirements for Design Quality Control (DQC) Plan
- 2. Design Data
 - a. Discipline-Specific Checklists
 - b. Design Quality Control
- 3. Test Reports
 - a. Verification Statement

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system that complies with the FAR Clause 52.246.12 titled "Inspection of Construction". QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent will be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest-level manager responsible for the overall construction activities at the site, including quality and production is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

- A. Submit no later than 30 days after receipt of Notice to Proceed (NTP) the CQC Plan proposed to implement the requirements of the FAR Clause 52.246.12 titled "Inspection of Construction". The Government will consider an Interim CQC Plan for the first 30 days of operation, which must be accepted within 10 business days of NTP. Design and/or construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.
- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite, including work by subcontractors, , fabricators, suppliers, and purchasing agents:

- 1. A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.
- The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.
- 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will be issued by the CQC System Manager. Furnish copies of these letters to the Contracting Officer or Authorized designee.
- 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
- 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
- 6. Procedures for tracking Preparatory, Initial, and Follow-Up control phases and control, verification, and acceptance tests including documentation.
- 7. Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.
- 8. Reporting procedures, including proposed reporting formats.

- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the Coordination meeting.
- 10. Coordinate schedule work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections and Schedule of Special Inspections. Where the applicable Code issue by the International Code Council (ICC) calls for inspections by the Building Official, the Contractor must include the inspections in the CQC Plan and must perform the inspections required by the applicable ICC. The Contractor must perform these inspections using independent qualified inspectors. Include the Special Inspection Plan requirements in the CQC Plan.
- C. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- D. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING:

After the Preconstruction Conference Post-Award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 5 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration

of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION:

- A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager/Site Superintendent/CQC System Manager and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26 Safety Requirements and reports directly to a senior project (or corporate) official. The Safety and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Government.
- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to have at least 10

- years construction experience on construction similar to the scope of this Contract. This CQC System manager is on the site at all times during construction and is employed by the General Contractor. The CQC System Manager is assigned as CQC System Manager but may have duties as project superintendent and/or Site Safety and Health Manager in addition to quality control.
- C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, Commissioning Agent/LEED specialist, and low voltage systems. These individuals or specified technical companies are employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan. A single person can cover more than one area provided that the single person is qualified to perform QC activities in each designated and that workload allows.

EXPERIENCE MATRIX

Area	Qualifications
Civil	Graduate Civil Engineer or Construction Manager with 2 years' experience in the type of work being performed on this project or technician with 5 years related
	experience.
Mechanical	Graduate Mechanical Engineer with 2 years' experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.

Area	Qualifications
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a
Structural	Construction company. Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years' experience or construction professional with 5 years' experience supervising structural features of work in the field with a construction company.
Architectural	Graduate Architect with 2 years' experience or construction professional with 5 years of related experience.
Environmental	Graduate Environmental Engineer with 3 years' experience.
Submittals	Submittal Clerk with 1-year experience.
Concrete, Pavement, and Soils	Materials Technician with 2 years' experience for the appropriate area.
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technician of the firm certified by the NEBB.
Design Quality Control Manager	Registered Architect or Professional Engineer

D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors

course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.

E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.

3.5 SUBMITTALS AND DELIVERABLES:

Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements. When Section 01 91 00 General Commissioning Requirements is included in the contract, the submittals required by the section have to be coordinated with the Section 01 33 23 Shop Drawings, Product Data, and Samples to ensure adequate time is allowed for each type of submittal required.

3.6 CONTROL:

- A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:
 - 1. Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:
 - a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.
 - b. Review of the Contract drawings.

- c. Check to assure that all materials and equipment have been tested, submitted, and approved.
- d. Review of provisions that have been made to provide required control inspection and testing.
- e. Review Special Inspections required by Section 01 45 35 Special Inspections, that Statement of Special Inspections and the Schedule of Specials Inspections.
- f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
- g. Examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored.
- h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.
- i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
- j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
- k. Discussion of the initial control phase.
- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.
- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
 - 1. Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.

- Verify adequacy of controls to ensure full contract compliance.
 Verify the required control inspection and testing is in compliance with the contract.
- 3. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
- 4. Resolve all differences.
- 5. Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
- 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.
- 7. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
- 8. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections.
- C. Follow-Up Phase: Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections
- D. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - 2. Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - 4. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.
 - 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.
- B. Testing Laboratories: All testing laboratories must be validated through the procedures contained in Specification section 01 45 29 Testing Laboratory Services.
 - 1. Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.

- 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor will be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

- A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by a time stated FAR 52.211-10 Commencement, Prosecution, and Completion of Work, or by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.
- B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.
- C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designee is required to be in

attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection will be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Resident Engineer office at least 14 days prior to the Final Acceptance Inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with FAR Clause 52.246-12 titled "Inspection of Construction".

3.9 DOCUMENTATION

- A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed.

 Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:
 - 1. The name and area of responsibility of the Contractor/Subcontractor
 - Operating plant/equipment with hours worked, idle, or down for repair.
 - 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
 - 4. Test and control activities performed with results and references to specification/drawing requirements. Identify the Control Phase (Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.
 - 5. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/drawing requirements.
 - 6. Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.
 - 7. Offsite surveillance activities, including actions taken.

- 8. Job safety evaluations stating what was checked, results, and instructions or corrective actions.
- 9. Instructions given/received and conflicts in plans and specifications.
- 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.
- B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

Templates of various quality control reports can be found on the Whole Building Design Guide website at https://www.wbdg.org/FFC/NAVGRAPH/ 01%2045%2000.00%2020 quality control reports.pdf

3.11 NOTIFICATION OF NONCOMPLIANCE:

The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly,

VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

--- End of Section ---

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the General Contractor.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

т27-11	Standard Method of Test for Sieve Analysis of
	Fine and Coarse Aggregates
T96-02 (R2006)	Standard Method of Test for Resistance to
	Degradation of Small-Size Coarse Aggregate by
	Abrasion and Impact in the Los Angeles Machine
Т99-10	Standard Method of Test for Moisture-Density
	Relations of Soils Using a 2.5 Kg (5.5 lb.)
	Rammer and a 305 mm (12 in.) Drop
T104-99 (R2007)	Standard Method of Test for Soundness of
	Aggregate by Use of Sodium Sulfate or Magnesium
	Sulfate
T180-10	Standard Method of Test for Moisture-Density
	Relations of Soils using a 4.54 kg (10 lb.)
	Rammer and a 457 mm (18 in.) Drop
T191-02(R2006)	Standard Method of Test for Density of Soil In-
	Place by the Sand-Cone Method
T310-13	Standard Method of Test for In-place Density
	and Moisture Content of Soil and Soil-aggregate
	by Nuclear Methods (Shallow Depth)

C. American Concrete Institute (ACI):

506.4R-94 (R2004)Guide for the Evaluation of Shotcrete

D.	American Society for Testing and	Materials (ASTM):
	A370-12Standard	Test Methods and Definitions for
	Mechanic	al Testing of Steel Products
	A416/A416M-10Standard	Specification for Steel Strand,
	Uncoated	Seven-Wire for Prestressed Concrete
	C31/C31M-10Standard	Practice for Making and Curing
	Concrete	Test Specimens in the Field
	C33/C33M-11aStandard	Specification for Concrete Aggregates
	C39/C39M-12Standard	Test Method for Compressive Strength
	of Cylin	drical Concrete Specimens
	C109/C109M-11bStandard	Test Method for Compressive Strength
	of Hydra	ulic Cement Mortars
	C136-06Standard	Test Method for Sieve Analysis of Fine
	and Coar	se Aggregates
	C138/C138M-10bStandard	Test Method for Density (Unit Weight),
	Yield, a	nd Air Content (Gravimetric) of
	Concrete	
	C140-12Standard	Test Methods for Sampling and Testing
	Concrete	Masonry Units and Related Units
	C143/C143M-10aStandard	Test Method for Slump of Hydraulic
	Cement C	oncrete
	C172/C172M-10Standard	Practice for Sampling Freshly Mixed
	Concrete	
	C173/C173M-10bStandard	Test Method for Air Content of freshly
	Mixed Co	ncrete by the Volumetric Method
	C330/C330M-09Standard	Specification for Lightweight
	Aggregat	es for Structural Concrete
	C567/C567M-11Standard	Test Method for Density Structural
	Lightwei	ght Concrete
	C780-11Standard	Test Method for Pre-construction and
	Construc	tion Evaluation of Mortars for Plain
	and Rein	forced Unit Masonry
	C1019-11Standard	Test Method for Sampling and Testing
	Grout	
	C1064/C1064M-11Standard	Test Method for Temperature of Freshly
	Mixed Po	rtland Cement Concrete

01 45 29 - 2

C1077-11c	.Standard Practice for Agencies Testing Concrete
	and Concrete Aggregates for Use in Construction
	and Criteria for Testing Agency Evaluation
C1314-11a	.Standard Test Method for Compressive Strength
	of Masonry Prisms
D422-63(2007)	.Standard Test Method for Particle-Size Analysis
	of Soils
D698-07el	.Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Standard Effort
D1140-00(2006)	.Standard Test Methods for Amount of Material in
	Soils Finer than No. 200 Sieve
D1143/D1143M-07e1	.Standard Test Methods for Deep Foundations
	Under Static Axial Compressive Load
D1188-07e1	.Standard Test Method for Bulk Specific Gravity
	and Density of Compacted Bituminous Mixtures
	Using Coated Samples
D1556-07	.Standard Test Method for Density and Unit
	Weight of Soil in Place by the Sand-Cone Method
D1557-09	.Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Modified Effort
	(56,000ft lbf/ft3 (2,700 KNm/m3))
D2166-06	.Standard Test Method for Unconfined Compressive
	Strength of Cohesive Soil
D2167-08)	.Standard Test Method for Density and Unit
	Weight of Soil in Place by the Rubber Balloon
	Method
D2216-10	.Standard Test Methods for Laboratory
	Determination of Water (Moisture) Content of
	Soil and Rock by Mass
D2974-07a	.Standard Test Methods for Moisture, Ash, and
	Organic Matter of Peat and Other Organic Soils
D3666-11	.Standard Specification for Minimum Requirements
	for Agencies Testing and Inspecting Road and
	Paving Materials
D3740-11	.Standard Practice for Minimum Requirements for
	Agencies Engaged in Testing and/or Inspection

	of Soil and Rock as used in Engineering Design
	and Construction
D6938-10	.Standard Test Method for In-Place Density and
	Water Content of Soil and Soil-Aggregate by
	Nuclear Methods (Shallow Depth)
E94-04(2010)	.Standard Guide for Radiographic Examination
E164-08	.Standard Practice for Contact Ultrasonic
	Testing of Weldments
E329-11c	.Standard Specification for Agencies Engaged in
	Construction Inspection, Testing, or Special
	Inspection
E543-09	.Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93 (R2011)	.Standard Test Methods for Thickness and Density $% \left\{ 1\right\} =\left\{ 1\right\} =\left$
	of Sprayed Fire Resistive Material (SFRM)
	Applied to Structural Members
E709-08	.Standard Guide for Magnetic Particle
	Examination
E1155-96(R2008)	.Determining FF Floor Flatness and FL Floor
	Levelness Numbers
F3125/F3125M-15	.Standard Specification for High Strength
	Structural Bolts, Steel and Alloy Steel, Heat
	Treated, 120 ksi (830 MPa) and 150 ksi (1040
	MPa) Minimum Tensile Strength, Inch and Metric
	Dimensions

E. American Welding Society (AWS):

D1.D1.1M-10Structural Welding Code-Steel

1.3 REQUIREMENTS:

A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications.

Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific

laboratory performing the actual testing, not just the "Corporate Office."

- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by COR. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of COR to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to COR, Contractor, unless other arrangements are agreed to in writing by the Resident Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to COR immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Provide part time observation of fill placement and compaction and field density testing to verify that earthwork compaction obtained is in accordance with contract documents.
 - 2. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.

B. Testing Compaction:

- Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D1557.
- 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556 or ASTM D2167 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative

methods, they should provide satisfactory explanation to the COR before the tests are conducted.

- a. Foundation Subgrade: At least one test of subgrade for every 185 \rm{m}^2 (2000 square feet) of equipment foundation, but in no case fewer than three tests. In each compacted fill layer, perform one test for every 185 \rm{m}^2 (2000 square feet) of overlaying building slab, but in no case fewer than three tests.
- C. Fill and Backfill Material Gradation: One test per 100 cubic yards stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM C136, ASTM D422, or ASTM D1140.
- D. Testing for Foundation Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.
- E. Testing Materials: Test suitability of on-site and off-site borrow as directed by Resident Engineer.

3.2 CONCRETE:

- A. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. Label each cylinder with an identification number. COR may require additional cylinders to be molded and cured under job conditions.
 - 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the

- beginning of each day's pumping operations to determine change in slump.
- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- 13. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.

- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.
 - c. Provide the Contractor and the COR with the results of all profile tests, including a running tabulation of the overall $F_{\rm F}$ and $F_{\rm L}$ values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - 1. Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by COR. Compile laboratory test reports as follows:
 Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
 - 2. Furnish certified compression test reports (duplicate) to Resident Engineer. In test report, indicate the following information:

- a. Cylinder identification number and date cast.
- b. Specific location at which test samples were taken.
- c. Type of concrete, slump, and percent air.
- d. Compressive strength of concrete in MPa (psi).
- e. Weather conditions during placing.
- f. Temperature of concrete in each test cylinder when test cylinder was molded.
- g. Maximum and minimum ambient temperature during placing.
- h. Ambient temperature when concrete sample in test cylinder was taken.
- i. Date delivered to laboratory and date tested.

- - - E N D - - -

01 45 29 - 9

Page intentionally left blank

01 45 29 - 10

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely affect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or,
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- 1. Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer Representative (COR) for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.

- d. Description of the Contractor's environmental protection personnel training program.
- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- 1. Inclusion of "best management practices" and methodologies.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and landforms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. Provide erosion control plans, in phases where required.
 - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - 2. Protection of Landscape: Protect trees, shrubs, vines, grasses, landforms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
 - 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the

construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.

- a. Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
- b. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 6. Manage borrow areas on and off Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on and off Government property to limit spoil to areas shown on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- 8. Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the COR.

- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Virginia and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - 1. Particulates: Control dust particles, aerosols, and gaseous by-products from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic

- precipitators, or other methods are permitted to control particulates in the work area.
- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m. unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 meters (50 feet) (dBA):

EARTHMOVING		MATERIALS	HANDLING
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75		
GENERATORS	75	SAWS	75

COMPRESSORS

75 VIBRATORS

75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the \underline{A} weighing network of a General-Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum, the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inserts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board, I-joists, etc).
 - 6. Metal products (eq, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

A. Submittal shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:

- B. Prepare and submit to the Contracting Officers Representative (COR) a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and selfhauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.

- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

 Include net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include net total costs for each disposal.

- - - E N D - - -

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

Page intentionally left blank

01 74 19 - 8

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - 1. "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.

- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.
- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture Bio Preferred program (USDA Bio Preferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - 1. Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.

- 01-20-2022 100% Submittal Front-End Specs
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- D. Construction Indoor Air Quality (IAQ) Management Plan:
 - 1. Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.

E. Product Submittals:

- 1. Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
- 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.

- 3. Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- 4. For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- F. Sustainable Construction Progress Reports: Concurrent with each
 Application for Payment, submit a Sustainable Construction Progress
 Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - 2. Include updated and current Low Pollutant-Emitting Materials
 Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - 1. Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 2. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - 3. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 4. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.

- b. Product data for filtration media installed immediately prior to occupancy.
- c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR/Resident Engineer and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.

- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - 1. Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.
 - 2) Wood Flooring Adhesive: 100 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Subfloor Adhesives: 50 g/L.
 - 5) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 6) Cove Base Adhesives: 50 g/L.
 - 7) Multipurpose Construction Adhesives: 70 g/L.
 - 8) Porous Material (Except Wood) Substrate: 50 g/L.
 - 9) Wood Substrate: 30 g/L.
 - 10) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 11) Architectural Porous Sealant Primer: 775 g/L.
 - 12) Other Sealant Primer: 750 g/L.
 - 13) Structural Wood Member Adhesive: 140 g/L.
 - 14) Sheet-Applied Rubber Lining Operations: 850 g/L.

- 15) Top and Trim Adhesive: 250 g/L.
- 16) Architectural Sealant: 250 g/L.
- 17) Other Sealant: 420 g/L.
- b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.
 - 3) Structural Glazing Adhesives: 100 g/L.
 - 4) Metal-to-Metal Substrate Adhesives: 30 g/L.
 - 5) Plastic Foam Substrate Adhesive: 50 g/L.
 - 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
 - 7) Wood Substrate Adhesive: 30 g/L.
 - 8) Fiberglass Substrate Adhesive: 80 g/L.
 - 9) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 10) Architectural Porous Sealant Primer: 775 g/L.
 - 11) Other Sealant Primer: 750 g/L.
 - 12) PVC Welding Adhesives: 510 g/L.
 - 13) CPVC Welding Adhesives: 490 g/L.
 - 14) ABS Welding Adhesives: 325 g/L.
 - 15) Plastic Cement Welding Adhesives: 250 g/L.
 - 16) Adhesive Primer for Plastic: 550 g/L.
 - 17) Contact Adhesive: 80 g/L.
 - 18) Special Purpose Contact Adhesive: 250 g/L.
 - 19) Structural Wood Member Adhesive: 140 g/L.
 - 20) Sheet Applied Rubber Lining Operations: 850 g/L.
 - 21) Top and Trim Adhesive: 250 g/L.
 - 22) Architectural Sealants: 250 g/L.
 - 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - a. Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:

- a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
- b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
- c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAOMD Rule 1113.
- d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.
 - 6) Interior Flat Paint, Coating or Primer: 50 g/L.
 - 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
 - 8) Sealers and Undercoaters: 200 g/L.
 - 9) Shellac, Clear: 730 g/L.
 - 10) Shellac, Pigmented: 550 g/L.
 - 11) Stain: 250 g/L.
 - 12) Clear Brushing Lacquer: 680 g/L.
 - 13) Concrete Curing Compounds: 350 g/L.
 - 14) Japans/Faux Finishing Coatings: 350 g/L.
 - 15) Magnesite Cement Coatings: 450 g/L.
 - 16) Pigmented Lacquer: 550 g/L.
 - 17) Waterproofing Sealers: 250 g/L.
 - 18) Wood Preservatives: 350 g/L.
 - 19) Low-Solids Coatings: 120 g/L.
- 4. Carpet installed in building interior must comply with one of the following:
 - a. Meet testing and product requirements of the Carpet and Rug Institute Green Label Plus program.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at the 14 day time point.

- 5. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:
 - a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14 day time point.
- 6. Composite wood and agrifiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins.
- 7. Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.

C. Recycled Content:

- 1. Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Flowable fill.
 - f. Laminated paperboard.
 - g. Modular threshold ramps.
 - h. Nonpressure pipe.
 - i. Patio blocks.
 - j. Railroad grade crossing surfaces.
 - k. Roofing materials.
 - 1. Shower and restroom dividers/partitions.
 - m. Structural fiberboard.
 - n. Nylon carpet and nylon carpet backing.
 - o. Compost and fertilizer made from recovered organic materials.
 - p. Hydraulic mulch.
 - q. Lawn and garden edging.
 - r. Plastic lumber landscaping timbers and posts.

- s. Park benches and picnic tables.
- t. Plastic fencing.
- u. Playground equipment.
- v. Playground surfaces.
- w. Bike racks.

D. Biobased Content:

- 1. Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - a. Adhesive and Mastic Removers.
 - b. Cleaners.
 - c. Composite Panels.
 - d. Floor Cleaners and Protectors.
 - e. Floor Coverings (Non-Carpet).
 - f. Glass Cleaners.
 - q. Industrial Cleaners.
 - h. Interior Paints and Coatings.
 - i. Mulch and Compost Materials.
 - j. Multipurpose Cleaners.
 - k. Multipurpose Lubricants.
 - 1. Packaging Films.
 - m. Paint Removers.
 - n. Plastic Insulating Foam.
 - o. Wood and Concrete Sealers.
 - p. Wood and Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
 - 1. WaterSense categories include:
 - a. Bathroom Faucets
 - b. Commercial Toilets
 - c. Irrigation Controllers
 - d. Pre-Rinse Spray Valves
 - e. Residential Toilets

- f. Showerheads
- g. Spray Sprinkler Bodies
- h. Urinals
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:
 - a. Appliances:
 - 1) Air Purifiers and Cleaners.
 - 2) Clothes Dryers (Residential).
 - 3) Clothes Washers (Commercial & Residential).
 - 4) Dehumidifiers.
 - 5) Dishwashers (Residential).
 - 6) Freezers (Residential).
 - 7) Refrigerators (Residential).
 - b. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Data Center Storage.
 - 4) Digital Media Player.
 - 5) Enterprise Servers.
 - 6) Imaging Equipment.
 - 7) Monitors.
 - 8) Professional Displays.
 - 9) Set-Top and Cable Boxes.
 - 10) Telephones.
 - 11) Televisions.
 - 12) Uninterruptible Power Supplies.
 - 13) Voice over Internet Protocol (VoIP) Phones.
 - c. Food Service Equipment (Commercial):
 - 1) Dishwashers.
 - 2) Fryers.
 - 3) Griddles.
 - 4) Hot Food Holding Cabinets.
 - 5) Ice Makers.
 - 6) Ovens.
 - 7) Refrigerators and Freezers.
 - 8) Steam Cookers.
 - 9) Vending Machines.

- d. Heating and Cooling Equipment:
 - 1) Air-Source Heat Pumps (Residential).
 - 2) Boilers.
 - 3) Ceiling Fans (Residential).
 - 4) Central Air Conditioners (Residential).
 - 5) Ductless Heating and Cooling (Residential).
 - 6) Furnaces (Residential).
 - 7) Water Heaters.
 - 8) Geothermal Heat Pumps (Residential).
 - 9) Light Commercial Heating and Cooling Equipment.
 - 10) Room Air Conditioners (Residential).
 - 11) Ventilation Fans (Residential).
- e. Other:
 - 1) Decorative Light Strings.
 - 2) Electric Vehicle Supply Equipment.
 - 3) Laboratory-Grade Refrigerators and Freezers.
 - 4) Light Bulbs.
 - 5) Light Fixtures.
 - 6) Pool Pumps.
 - 7) Roof Products.
 - 8) Water Coolers.
 - 9) Windows, Doors, and Skylights.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Boilers (Commercial).
 - 2. Dishwashers (Commercial).
 - 3. Electric Chillers- Air-Cooled (Commercial).
 - 4. Electric Chillers- Water-Cooled (Commercial).
 - 5. Exterior Lighting.
 - 6. Fluorescent Ballasts.
 - 7. Fluorescent Lamps, General Service.
 - 8. Ice Machines, Water-Cooled.
 - 9. Industrial Lighting (High/Low Bay).
 - 10. Light Emitting Diode (LED) Luminaires.

- H. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.
 - 4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Construction Indoor Air Quality Management:
 - 1. During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - Protect stored on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
 - 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.
 - 5. Provide construction dust control to comply with SCAQMD Rule 403.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

----END----

01 81 13 - 14

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall

encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officer's Representative (COR) as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the

01-20-2022

Front-End Specs

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia

- project (Commissioning Agent and Architect/Engineer) be conducted through the COR.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.
- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - 1. No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.

01 91 00 - 3

5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS
- E. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.

1.5 ACRONYMS

List of Acronyms		
Acronym	Meaning	
A/E	Architect / Engineer Design Team	
AHJ	Authority Having Jurisdiction	
ASHRAE	Association Society for Heating Air Condition and	
	Refrigeration Engineers	
BOD	Basis of Design	
BSC	Building Systems Commissioning	
CCTV	Closed Circuit Television	
CD	Construction Documents	
CMMS	Computerized Maintenance Management System	
СО	Contracting Officer (VA)	
COR	Contracting Officer's Representative	
COBie	Construction Operations Building Information Exchange	
CPC	Construction Phase Commissioning	
Сх	Commissioning	

List of Ac	List of Acronyms		
Acronym	Meaning		
CxA	Commissioning Agent		
CxM	Commissioning Manager		
CxR	Commissioning Representative		
DPC	Design Phase Commissioning		
FPT	Functional Performance Test		
GBI-GG	Green Building Initiative - Green Globes		
HVAC	Heating, Ventilation, and Air Conditioning		
LEED	Leadership in Energy and Environmental Design		
NC	Department of Veterans Affairs National Cemetery		
NCA	Department of Veterans Affairs National Cemetery		
10071	Administration		
NEBB	National Environmental Balancing Bureau		
O&M	Operations & Maintenance		
OPR	Owner's Project Requirements		
PFC	Pre-Functional Checklist		
PFT	Pre-Functional Test		
SD	Schematic Design		
SO	Site Observation		
TAB	Test Adjust and Balance		
VA	Department of Veterans Affairs		
VAMC	VA Medical Center		
VA CFM	VA Office of Construction and Facilities Management		
VACO	VA Central Office		
VA PM	VA Project Manager		
USGBC	United States Green Building Council		

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia

<u>Accuracy:</u> The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

<u>Benchmarks:</u> Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

<u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability:</u> Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

<u>Commissioning Issue:</u> A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

Commissioning Manager (CxM): A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process:</u> A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and

documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

Commissioning Representative (CxR): An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

<u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

<u>Design Criteria:</u> A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

<u>Design Intent:</u> The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

<u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR.

<u>Design Phase Commissioning (DPC):</u> All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical
equipment, airflow, water flow and electrical energy to provide
heating, ventilating, air conditioning, humidification, and
dehumidification for the purpose of human comfort or process control of
temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

<u>Functional Test Procedure (FTP):</u> A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Industry Accepted Best Practice:</u> A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

<u>Lessons Learned Workshop:</u> A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

Manual Test: Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation').

Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

<u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning

review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

<u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

<u>Pre-Functional Test (PFT):</u> An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

<u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

<u>Special System Inspections:</u> Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests:</u> Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

<u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by

the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

Systems To Be Commissio	ned
System	Description
HVAC	
Noise and Vibration	Noise and vibration levels for critical
Control	equipment such as Air Handlers, Chillers,
	Cooling Towers, Boilers, Generators, etc. will
	be commissioned as part of the system
	commissioning
Direct Digital Control	Operator Interface Computer, Operator Work
System**	Station (including graphics, point mapping,
	trends, alarms), Network Communications
	Modules and Wiring, Integration Panels. [DDC
	Control panels will be commissioned with the
	systems controlled by the panel]
Chilled Water System**	Chillers (centrifugal, rotary screw, air-
	cooled), pumps (primary, secondary, variable
	primary), VFDs associated with chilled water
	system components, DDC Control Panels
	(including integration with Building Control
	System)
Condenser Water	Cooling Towers, Fluid Coolers, heat
System**	exchangers/economizers, pumps, VFDs associated
	with condenser water system components, DDC
	control panels.
Steam/Heating Hot	Boilers, boiler feed water system,
Water System**	economizers/heat recovery equipment,
	condensate recovery, water treatment, boiler
	fuel system, controls, interface with facility
	DDC system.
HVAC Air Handling	Air handling Units, packaged rooftop AHU,
Systems**	Outdoor Air conditioning units, humidifiers,
	DDC control panels
HVAC	General exhaust, toilet exhaust, laboratory
Ventilation/Exhaust	exhaust, isolation exhaust, room
Systems	pressurization control systems

Systems To Be Commission	ned
System	Description
HVAC Energy Recovery	Heat Wheels, Heat Recovery Loops, AHU
Systems**	Integrated Heat Recovery
HVAC Terminal Unit	VAV Terminal Units, CAV terminal units, fan
Systems**	coil units, fin-tube radiation, unit heaters
Decentralized Unitary	Split-system HVAC systems, controls, interface
HVAC Systems*	with facility DDC
Hydronic Distribution	Pumps, DDC control panels, heat exchangers,
Systems	
Smoke Evacuation	Atrium smoke evacuation, other smoke
System	evacuation and smoke management systems,
	controls, interface with other systems (fire
	alarm), emergency operation.
Electrical	
Grounding & Bonding	Witness 3rd party testing, review reports
Systems	
Electrical System	Review reports, verify field settings
Protective Device	consistent with Study
Study	
Emergency Power	Generators, Generator paralleling switchgear,
Generation Systems	automatic transfer switches, PLC and other
	control systems
Lightning Protection	Witness 3rd party testing, review reports
System	
Integrated Systems Test	s
Loss of Power Response	Loss of power to building, loss of power to
	campus, restoration of power to building,
	restoration of power to campus.
Fire Alarm Response	Integrated System Response to Fire Alarm
	Condition and Return to Normal
Table Notes	

Systems To Be Commissioned								
System	Description							
** Denotes systems that	LEED requires to be commissioned to comply							
with the LEED Fundament	al Commissioning pre-requisite.							

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.

- 2. Training in operation and maintenance of systems, subsystems, and equipment.
- 3. Testing meetings.
- 4. Witness and assist in Systems Functional Performance Testing.
- 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - 6. Participate in meetings to coordinate Systems Functional Performance Testing.

- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10.Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues.

 Observe systems and equipment installation for adequate accessibility

for maintenance and component replacement or repair, and for general conformance with the Construction Documents.

- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

 Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation

requirements of the commissioning process, and shall include, but is not limited, to the following:

- 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
- 2. Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10.Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11.Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test

01 91 00 - 20

procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:

- 1. Name and identification code of tested system.
- 2. Test number.
- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results. Any re-testing of systems or equipment shall be performed by the Contractor until such testing is complete and satisfies the

01 91 00 - 21

- specified requirements. All re-testing shall be performed at no additional cost to the Owner.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating a Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
 - 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.

- d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
- e. Identify person(s) who corrected or resolved the issue.
- f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
 - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
 - 5, Commissioning Issues Log.
 - 6. Listing of deferred and off-season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.

- Completed Systems Functional Performance Test Procedures for off season test(s).
- 3. Documentation that unresolved system performance issues have been resolved.
- 4. Updated Commissioning Issues Log, including status of unresolved issues.
- 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent shall prepare a Preliminary Commissioning Plan based on the final Construction Documents, and shall contain preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.

- 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.

- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.

I. Data for Commissioning:

- The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
- 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 14 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 14 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related

tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals.

 Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The

- Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing.

 Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

01 91 00 - 29

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Phase		CxA =	Commis	L = Lead			
		RE = C	OR	P = Participate			
Commingianian D	Commissioning Roles & Responsibilities		Design	Arch/	eer	A = Approve	
Commissioning R	oies & Responsibilities	PC = P	rime C	ontrac	ctor		R = Review
		O&M =	Gov't	Facili	ty O&N	1	O = Optional
Category Task Description			RE	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	А	Р	Р	0	
	Commissioning Meetings	L	A	P	P	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Controls Meeting	L	А	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	А	Р	Р	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	А	R	R	0	
Schedules	Duration Schedule for Commissioning Activities	L	А	R	R	N/A	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	

Construction Phase		CxA =	Commis	sionir	L = Lead		
		RE = 0	COR	P = Participate			
		A/E =	Design	A = Approve			
Commissioning F	Roles & Responsibilities	PC = I	Prime (Contra	ctor		R = Review
		O&M =	Gov't	Facil	ity O&	M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document	TAB Plan Review	L	A	R	R	0	
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	А	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A	
Site Observations	Witness Factory Testing	P	А	P	L	0	
Observations	Construction Observation Site Visits	L	А	R	R	0	
			1				
Functional	Final Pre-Functional Checklists	L	A	R	R	0	
Test Protocols	Final Functional Performance Test Protocols	L	A	R	R	0	
Technical	Taguas Dagalutian Mastings	P	70	P	_		
Activities	Issues Resolution Meetings	r	A	r	L	0	
Reports and	Status Reports	L	А	R	R	0	

Construction Phase			Commis	sionin	L = Lead		
			OR		P = Participate		
			Design	Arch/	er	A = Approve	
		PC = P	rime C	ontrac		R = Review	
		O&M = Gov't Facility O&M					O = Optional
Category	Task Description	CxA	CxA RE A/E PC O&M			Notes	
Logs Maintain Commissioning Issues Log		L	А	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phase		CxA = Commissioning Agent					L = Lead
		RE = C	COR		P = Participate		
		A/E =	Desig	n Arch	n/Engir	neer	A = Approve
Commissioning	Roles & Responsibilities	PC = F	rime	Contra	actor		R = Review
		O&M = Gov't Facility O&M					O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Commissioning Meetings	L	А	Р	Р	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Pre-Test Coordination Meeting	L	А	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	А	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0	

Acceptance Phase			Commi	ssion	L = Lead		
					P = Participate		
		A/E =	Desig	gn Arch	A = Approve		
Commissioning Roles & Responsibilities		PC =	Prime	Contr	actor		R = Review
		O&M =	Gov't	Faci.	lity C	M&(O = Optional
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	А	R	R	0	
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	А	R	R	0	
	Review TAB Report	L	А	R	R	0	
Site	Construction Observation Site Visits	L	A	R	R	0	
Observations	Witness Selected Equipment Startup	L	А	R	R	0	
Functional	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	A	P	P	P	İ
	Retesting	L	A	Р	P	P	

Acceptance Phase		CxA = Commissioning Agent					L = Lead
		RE = C	OR		P = Participate		
		A/E =	Desig	n Arch	neer	A = Approve	
Commissioning F	Commissioning Roles & Responsibilities		rime	Contra	actor		R = Review
			Gov't	Facil	Mx	O = Optional	
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Technical	Issues Resolution Meetings	Р	А	Р	L	0	
Activities	Systems Training	L	S	R	Р	Р	
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	
	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase	Warranty Phase			ssion	L = Lead		
		RE =	COR		P = Participate		
		A/E =	Desig	n Arcl	A = Approve		
Commissioning l	Roles & Responsibilities	PC =	Prime	Contr	actor		R = Review
		O&M =	Gov't	Faci	lity C	M&(O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	Р	Р	
Site Observations	Periodic Site Visits	L	А	0	0	P	
Functional Test Protocols	Deferred and/or seasonal Testing	L	А	0	Р	Р	
1030 110000013							
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	А		R	P	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.

- c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.

3. Sensor and Actuator Calibration

- a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
- b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.

4. Execution of Equipment Startup

- a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.

- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance
 Testing is to demonstrate that each system is operating according to
 the Contract Documents. Systems Functional Performance Testing
 facilitates bringing the systems from a state of substantial completion
 to full dynamic operation. Additionally, during the testing process,
 areas of noncompliant performance are identified and corrected, thereby
 improving the operation and functioning of the systems. In general,
 each system shall be operated through all modes of operation (seasonal,
 occupied, unoccupied, warm-up, cool-down, part- and full-load, fire
 alarm and emergency power) where there is a specified system response.
 The Contractor shall verify each sequence in the sequences of
 operation. Proper responses to such modes and conditions as power
 failure, freeze condition, low oil pressure, no flow, equipment
 failure, etc. shall also be tested.

- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.
- D. Purpose of Test Procedures: The purpose of each specific Systems
 Functional Performance Test is to verify and document compliance with
 the stated criteria of acceptance given on the test form.
 Representative test formats and examples are found in the Commissioning
 Plan for this project. (The Commissioning Plan is issued as a separate
 document and is available for review.) The test procedure forms
 developed by the Commissioning Agent will include, but not be limited
 to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia

- 10. Required pretest field measurements
- 11. Instructions for setting up the test.
- 12. Special cautions, alarm limits, etc.
- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14.Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
 - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.

01 91 00 - 39

- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the

completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.

- J. Testing Prerequisites: In general, Systems Functional Performance

 Testing will be conducted only after Pre-Functional Checklists have
 been satisfactorily completed. The control system shall be sufficiently
 tested and approved by the Commissioning Agent and the VA before it is
 used to verify performance of other components or systems. The air
 balancing and water balancing shall be completed before Systems
 Functional Performance Testing of air-related or water-related
 equipment or systems are scheduled. Systems Functional Performance
 Testing will proceed from components to subsystems to systems. When the
 proper performance of all interacting individual systems has been
 achieved, the interface or coordinated responses between systems will
 be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.

- 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
- 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
- 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.

c. The Commissioning Agent will document the resolution process.

01-20-2022

- d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - 1. Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.

- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation

conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.

- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - 6. Review course materials (including operation and maintenance manuals).
 - 7. Review and discuss locations and other facilities required for instruction.
 - 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
 - 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.

- 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

D. Quality Assurance:

- 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.

E. Training Coordination:

- 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
 - b. Intrusion detection systems.
 - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
 - d. Medical equipment, including medical gas equipment and piping.
 - e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
 - f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
 - g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
 - h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
 - i. HVAC instrumentation and controls.
 - j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
 - k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
 - 1. Lighting equipment and controls.
 - m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass

evacuation, voice and data, and entertainment television equipment.

- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - H, Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.

- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.

e. Review of spare parts needed for operation and maintenance.

H. Training Execution:

 Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.

2. Instruction:

- a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
- b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

I. Demonstration and Training Recording:

 General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams,

and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.

- 2. Video Format: Provide high quality color DVD color on standard size DVD disks.
- 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training.

 Display continuous running time.
- 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

- - - END - - -

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Front-End Specs

PAGE INTENTIONALLY LEFT BLANK

01 91 00 - 52

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- E. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- F. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck.

Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.

- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - No wall or part of wall shall be permitted to fall outwardly from structures.
 - 2. Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed.
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works.

Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.

- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm

(5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.

E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer.

When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer.

Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 05 51 00 METAL STAIRS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section includes the following:
 - Preassembled steel stairs with galvanized steel grating concretefilled [and abrasive-coating-finished] formed-metal treads and landings.
 - 2. Galvanized steel tube railings attached to metal stairs.
 - 3. Galvanized steel tube handrails attached to quard railings.

1.03 PERFORMANCE REQUIREMENTS

- A. Structural Performance of Stairs: Provide metal stairs capable of withstanding the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 - 1. Uniform Load: 100 lbf/sq. ft. (4.79 kN/sq. m).
 - 2. Concentrated Load: 300 lbf (1.33 kN) applied on an area of 4 sq. in. (2580 sq. mm).
 - Uniform and concentrated loads need not be assumed to act concurrently.
 - 4. Stair Framing: Capable of withstanding stresses resulting from railing loads in addition to loads specified above.
 - 5. Limit deflection of treads, platforms, and framing members to L/240 or 1/4 inch (6.4 mm), whichever is less.
- B. Structural Performance of Railings: Provide railings capable of withstanding the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 - 1. Handrails:
 - a. Uniform load of 50 lbf/ ft. (0.73 kN/m) applied in any direction.
 - b. Concentrated load of 200 lbf (0.89 kN) applied in any direction.
 - c. Uniform and concentrated loads need not be assumed to act concurrently.
 - 2. Top Rails of Guards:

- a. Uniform load of 50 lbf/ ft. (0.73 kN/m) applied horizontally and concurrently with 100 lbf/ ft. (1.46 kN/m) applied vertically downward.
- b. Concentrated load of 200 lbf (0.89 kN) applied in any direction.
- c. Uniform and concentrated loads need not be assumed to act concurrently.

3. Infill of Guards:

- a. Concentrated load of 50 lbf (0.22 kN) applied horizontally on an area of 1 sq. ft. (0.093 sq. m).
- b. Uniform load of 25 lbf/sq. ft. (1.2 kN/sq. m) applied horizontally.
- c. Infill load and other loads need not be assumed to act concurrently.
- C. Seismic Performance: Provide metal stairs capable of withstanding the effects of earthquake motions determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures": Section 9, "Earthquake Loads".

1.04 SUBMITTALS

- A. Product Data: For metal stairs and the following:
 - 1. Galvanized metal grating stair treads.
 - 2. Galvanized coating.
 - 3. Paint products.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Provide templates for anchors and bolts specified for installation under other Sections.
 - 2. For installed products indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- C. Welding certificates.

1.05 QUALITY ASSURANCE

- A. Installer Qualifications: Fabricator of products.
- B. NAAMM Stair Standard: Comply with "Recommended Voluntary Minimum Standards for Fixed Metal Stairs" in NAAMM AMP 510, "Metal Stairs Manual," for class of stair designated, unless more stringent requirements are indicated.
 - 1. Preassembled Stairs: Commercial class.

- C. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel".
 - 2. AWS D1.3, "Structural Welding Code--Sheet Steel".

1.06 COORDINATION

A. Coordinate installation of anchorages for metal stairs. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry.

Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.01 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces, unless otherwise indicated. For components exposed to view in the completed Work, provide materials without seam marks, or blemishes.

2.02 FERROUS METALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Steel Tubing: ASTM A 500 (cold formed).
- C. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.
- D. Iron Castings: Either gray or malleable iron, unless otherwise indicated.
 - 1. Gray Iron: ASTM A 48/A 48M, Class 30, unless another class is indicated or required by structural loads.
 - 2. Malleable Iron: ASTM A 47/A 47M.
- E. Galvanized Steel Sheet: ASTM A 653/A 653M, G90 (Z275) coating, structural steel, Grade 33 (Grade 230), unless another grade is required by design loads.

2.03 ABRASIVE NOSINGS AND WARNING STRIPS

- A. Metal Units: Cast gray iron, Class 20, or extruded aluminum, with an integral abrasive finish consisting of aluminum oxide, silicon carbide, or a combination of both. At interior exit stairs provide nosings with photoluminescent strip inset full length of nosing. Fabricate units in sizes and configurations indicated and in lengths necessary to accurately fit openings or conditions.
 - 1. Manufacturers:
 - a. American Safety Tread Co., Inc.
 - b. Balco Inc.

- c. Barry Pattern & Foundry Co., Inc.
- d. Granite State Casting Co.
- e. Safe-T-Metal Co.
- f. Wooster Products Inc.
- 2. Configuration: Cross-hatched units, 3 inches (76 mm) wide without lip.
- B. Provide anchors for embedding units in concrete, either integral or applied to units, as standard with manufacturer.
- C. Apply bituminous paint to concealed bottoms, sides, and edges of castmetal units set into concrete.
- D. Apply clear lacquer to concealed bottoms, sides, and edges of extruded units set into concrete.

2.04 FASTENERS

- A. General: Provide zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 25 for exterior use, and Class Fe/Zn 5 where built into exterior walls. Select fasteners for type, grade, and class required.
- B. Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
- C. Anchor Bolts: ASTM F 1554, Grade 36.
 - 1. Provide hot-dip or mechanically deposited, zinc-coated anchor bolts for exterior stairs.
- D. Machine Screws: ASME B18.6.3 (ASME B18.6.7M).
- E. Lag Bolts: ASME B18.2.1 (ASME B18.2.3.8M).
- F. Plain Washers: Round, ASME B18.22.1 (ASME B18.22M).
- G. Lock Washers: Helical, spring type, ASME B18.21.1 (ASME B18.21.2M).
- H. Expansion Anchors: Anchor bolt and sleeve assembly with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
 - 1. Material for Anchors in Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B 633, Class Fe/Zn 5.
 - 2. Material for Anchors in Exterior Locations: Alloy Group 1 (A1) stainless-steel bolts complying with ASTM F 593 (ASTM F 738M) and nuts complying with ASTM F 594 (ASTM F 836M).

2.05 MISCELLANEOUS MATERIALS

- A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- B. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.

2.06 FABRICATION, GENERAL

- A. Provide complete stair assemblies, including metal framing, struts, railings, clips, brackets, bearing plates, and other components necessary to support and anchor stairs and platforms on supporting structure.
 - 1. Join components by welding, unless otherwise indicated.
 - 2. Use connections that maintain structural value of joined pieces.
- B. Preassembled Stairs: Assemble stairs in shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- C. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm), unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- D. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- E. Form exposed work true to line and level with accurate angles and surfaces and straight edges.
- F. Weld connections to comply with the following:
 - Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Weld exposed corners and seams continuously, unless otherwise indicated.
 - 5. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- G. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts unless otherwise indicated. Locate joints where least conspicuous.

H. Fabricate joints that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

2.07 STEEL-FRAMED STAIRS

- A. Manufacturers:
 - 1. Alfab, Inc.
 - 2. American Stair, Inc.
 - 3. Sharon Companies Ltd. (The).
- B. Stair Framing:
 - 1. Fabricate stringers of channels.
 - 2. Construct platforms of galvanized grating and miscellaneous framing members as needed to comply with performance requirements.
 - 3. Weld stringers to headers; weld framing members to stringers and headers.

C. Galvanized Metal Stairs:

- 1. Galvanized Stair Grating Treads: To include 3-inch galvanized toe kick in 48-inch width, similar or equal to 11W4 - 11-1/4 inches by 1-inch by 3/16-inch bearing bar sized, spaced on 11/16-inch centers (i.e., 1/2-inch openings).
 - a. Basis-of-Design: Model TK48TRGBG-11W4, by FS Industries.
- 2. Galvanized Stair Grating Landing: Match the treads in design, and shall bellW4, 1-inch deep by 3/16-inch bearing bar size, spaced on 11/16-inch centers. Provide nosing trim at landing termination above stair treads.
- Directly weld prefabricated galvanized stair tread and platform grating to stringers and/or grating. Do not weld risers to stringers.

2.08 STEEL TUBE RAILINGS

- A. General: Fabricate railings to comply with requirements indicated for design, dimensions, details, finish, and member sizes, including wall thickness of tube, post spacings, and anchorage, but not less than that needed to withstand indicated loads.
 - 1. Configuration: 1-1/2-inch inside diameter verticals and top rail; 1-1/4-inch inside diameter horizontal rails. Space intermediate rails less than 12 inches (305 mm) clear.
- B. Welded Connections: Fabricate railings with welded connections. Cope components at connections to provide close fit, or use fittings

designed for this purpose. Weld all around at connections, including at fittings.

- C. Form changes in direction of railings as follows:
 - 1. By inserting prefabricated flush-elbow fittings.
- D. Close exposed ends of railing members with prefabricated end fittings.
- E. Close ends of returns.
- F. Flanges, Fittings, and Anchors: Provide end closures, flanges, miscellaneous fittings, and anchors for interconnecting components and for attaching to other work. Furnish inserts and other anchorage devices for connecting to concrete or masonry work.
 - Connect posts to stair framing by direct welding, unless otherwise indicated.
 - 2. For galvanized railings, provide galvanized fittings, brackets, fasteners, sleeves, and other ferrous-metal components.

2.09 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Field-applied primers and coatings shall meet the restrictions on volatile organic compounds as required in Division 01 Section "Limits for Volatile Organic Compound Contents for Adhesives, Sealants, Paints, and Coatings."
- C. Finish metal stairs after assembly.
- D. Galvanizing: Hot-dip galvanize items as indicated to comply with applicable standard listed below:
 - 1. ASTM A 123/A 123M, for galvanizing steel and iron products.
 - 2. ASTM A 153/A 153M, for galvanizing steel and iron hardware.
 - 3. Fill vent and drain holes that will be exposed in finished Work, unless indicated to remain as weep holes, by plugging with zinc solder and filing off smooth.

PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

- A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing metal stairs to in-place construction. Include threaded fasteners for concrete and masonry inserts, through-bolts, lag bolts, and other connectors.
- B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal stairs. Set units accurately in

location, alignment, and elevation, measured from established lines and levels and free of rack.

- C. Install metal stairs by welding stair framing to plates anchored into concrete, unless otherwise indicated.
- D. Fit exposed connections accurately together to form hairline joints.

 Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- E. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

3.02 INSTALLING STEEL TUBE RAILINGS

- A. Attach handrails to vertical guard rails with brackets. Provide bracket with 1-1/2-inch (38-mm) clearance from inside face of handrail and finished guardrail. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads.
 - 2. Use type of bracket with predrilled hole for exposed bolt anchorage.
 - 3. For concrete and solid masonry anchorage, use drilled-in expansion shields and hanger or lag bolts.

3.03 ADJUSTING AND CLEANING

A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

- - - END - - -

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation, and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, of Building
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
 - b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.

- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.

4. Zoning:

- a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
- b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.
- 5. Provide seismic protection in accordance with NFPA 13. Contractor shall submit load calculations for sizing of sway bracing for systems that are required to be protected against damage from earthquakes.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

1. Qualifications:

- a. Provide a copy of the installing contractors state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.

4. Calculation Sheets:

- a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- b. Submit calculations of loads for sizing of sway bracing in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In

21 13 13 - 3

addition, submittals shall include, but not be limited to, the following:

- a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

A. Installer Reliability: The installer shall possess a valid State of Virginia fire sprinkler contractor's license. The installer shall have

been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.

B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-13	Installation	on of Spri	nkler Systems		
25-14	Inspection,	Testing,	and Maintenance	of	Water-
Based Fire Protection Systems					

101-15Life Safety Code
170-15Fire Safety Symbols

C. Underwriters Laboratories, Inc. (UL):
Fire Protection Equipment Directory (2011)

D. Factory Mutual Engineering Corporation (FM):
 Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - 1. Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-22-2022 100% Submittal Version 06-01-15

- 3. Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
- 4. Use nonferrous piping in MRI Scanning Rooms.
- 5. Plastic piping shall not be permitted except for drain piping.
- 6. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.4 SPRINKLERS

A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-22-2022 100% Submittal Version 06-01-15

of the type of system being installed, to supervise the installation and testing of the system.

- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, and seismic bracing shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.

- I. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- L. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- M. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- N. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-22-2022 100% Submittal Version 06-01-15

Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

- A. :
 - 1. ac: Alternating Current
 - 2. AC: Air Conditioning
 - 3. ACU: Air Conditioning Unit
 - 4. ACR: Air Conditioning and Refrigeration
 - 5. AI: Analog Input

1.2 AISI: AMERICAN IRON DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
 - 3. Abbreviations/Acronymsand Steel Institute
 - 4. AO: Analog Output
 - 5. ASJ: All Service Jacket
 - 6. AWG: American Wire Gauge
 - 7. BACnet: Building Automation and Control Networking Protocol
 - 8. BAg: Silver-Copper-Zinc Brazing Alloy
 - 9. BAS: Building Automation System
 - 10. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 11. bhp: Brake Horsepower
 - 12. Btu: British Thermal Unit
 - 13. Btu/h: British Thermal Unit Per Hour
 - 14. CDA: Copper Development Association
 - 15. C: Celsius
 - 16. CD: Compact Disk
 - 17. CFM: Cubic Foot Per Minute
 - 18. CH: Chilled Water Supply
 - 19. CHR: Chilled Water Return
 - 20. CLR: Color
 - 21. CO: Carbon Monoxide
 - 22. COR: Contracting Officer's Representative
 - 23. CPD: Condensate Pump Discharge

- 24. CPM: Cycles Per Minute
- 25. CPVC: Chlorinated Polyvinyl Chloride
- 26. CRS: Corrosion Resistant Steel
- 27. CTPD: Condensate Transfer Pump Discharge
- 28. CTPS: Condensate Transfer Pump Suction
- 29. CW: Cold Water
- 30. CWP: Cold Working Pressure
- 31. CxA: Commissioning Agent
- 32. dB: Decibels
- 33. dB(A): Decibels (A weighted)
- 34. DDC: Direct Digital Control
- 35. DI: Digital Input
- 36. DO: Digital Output
- 37. DVD: Digital Video Disc
- 38. DN: Diameter Nominal
- 39. DWV: Drainage, Waste and Vent
- 40. EPDM: Ethylene Propylene Diene Monomer
- 41. EPT: Ethylene Propylene Terpolymer
- 42. ETO: Ethylene Oxide
- 43. F: Fahrenheit
- 44. FAR: Federal Acquisition Regulations
- 45. FD: Floor Drain
- 46. FED: Federal
- 47. FG: Fiberglass
- 48. FGR: Flue Gas Recirculation
- 49. FOS: Fuel Oil Supply
- 50. FOR: Fuel Oil Return
- 51. FSK: Foil-Scrim-Kraft facing
- 52. FWPD: Feedwater Pump Discharge
- 53. FWPS: Feedwater Pump Suction
- 54. GC: Chilled Glycol Water Supply
- 55. GCR: Chilled Glycol Water Return
- 56. GH: Hot Glycol Water Heating Supply
- 57. GHR: Hot Glycol Water Heating Return
- 58. gpm: Gallons Per Minute
- 59. HDPE: High Density Polyethylene
- 60. Hg: Mercury

23 05 11 - 2

- 61. HOA: Hands-Off-Automatic
- 62. hp: Horsepower
- 63. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 64. HPR: High Pressure Steam Condensate Return
- 65. HW: Hot Water
- 66. HWH: Hot Water Heating Supply
- 67. HWHR: Hot Water Heating Return
- 68. Hz: Hertz
- 69. ID: Inside Diameter
- 70. IPS: Iron Pipe Size
- 71. kg: Kilogram
- 72. klb: 1000 lb
- 73. kPa: Kilopascal
- 74. lb: Pound
- 75. lb/hr: Pounds Per Hour
- 76. L/s: Liters Per Second
- 77. L/min: Liters Per Minute
- 78. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 79. LPR: Low Pressure Steam Condensate Gravity Return
- 80. MAWP: Maximum Allowable Working Pressure
- 81. MAX: Maximum
- 82. MBtu/h: 1000 Btu/h
- 83. MBtu: 1000 Btu
- 84. MED: Medical
- 85. m: Meter
- 86. MFG: Manufacturer
- 87. mg: Milligram
- 88. mg/L: Milligrams Per Liter
- 89. MIN: Minimum
- 90. MJ: Megajoules
- 91. ml: Milliliter
- 92. mm: Millimeter
- 93. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig))
- 94. MPR: Medium Pressure Steam Condensate Return
- 95. MW: Megawatt
- 96. NC: Normally Closed

23 05 11 - 3

- 97. NF: Oil Free Dry (Nitrogen)
- 98. Nm: Newton Meter
- 99. NO: Normally Open
- 100. NOx: Nitrous Oxide
- 101. NPT: National Pipe Thread
- 102. NPS: Nominal Pipe Size
- 103. OD: Outside Diameter
- 104. OSD: Open Sight Drain
- 105. OS&Y: Outside Stem and Yoke
- 106. PC: Pumped Condensate
- 107. PID: Proportional-Integral-Differential
- 108. PLC: Programmable Logic Controllers
- 109. PP: Polypropylene
- 110. PPE: Personal Protection Equipment
- 111. ppb: Parts Per Billion
- 112. ppm: Parts Per Million
- 113. PRV: Pressure Reducing Valve
- 114. PSIA: Pounds Per Square Inch Absolute
- 115. psig: Pounds Per Square Inch Gauge
- 116. PTFE: Polytetrafluoroethylene
- 117. PVC: Polyvinyl Chloride
- 118. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White
- 119. PVDF: Polyvinylidene Fluoride
- 120. rad: Radians
- 121. RH: Relative Humidity
- 122. RO: Reverse Osmosis
- 123. rms: Root Mean Square
- 124. RPM: Revolutions Per Minute
- 125. RS: Refrigerant Suction
- 126. RTD: Resistance Temperature Detectors
- 127. RTRF: Reinforced Thermosetting Resin Fittings
- 128. RTRP: Reinforced Thermosetting Resin Pipe
- 129. SCFM: Standard Cubic Feet Per Minute
- 130. SPEC: Specification
- 131. SPS: Sterile Processing Services
- 132. STD: Standard
- 133. SDR: Standard Dimension Ratio

23 05 11 - 4

- 134. SUS: Saybolt Universal Second
- 135. SW: Soft water
- 136. SWP: Steam Working Pressure
- 137. TAB: Testing, Adjusting, and Balancing
- 138. TDH: Total Dynamic Head
- 139. TEFC: Totally Enclosed Fan-Cooled
- 140. TFE: Tetrafluoroethylene
- 141. THERM: 100,000 Btu
- 142. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 143. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 144. T/P: Temperature and Pressure
- 145. USDA: U.S. Department of Agriculture
- 146. V: Volt
- 147. VAC: Vacuum
- 148. VA: Veterans Administration
- 149. VAC: Voltage in Alternating Current
- 150. VA CFM: VA Construction & Facilities Management
- 151. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 152. VAMC: Veterans Administration Medical Center
- 153. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 154. VR: Vacuum condensate return
- 155. WCB: Wrought Carbon Steel, Grade B
- 156. WG: Water Gauge or Water Column
- 157. WOG: Water, Oil, Gas

1.3 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Not used.
- E. Not used.
- F. Not used.
- G. Not used.
- H. Not used.
- I. Not used.
- J. Section 05 50 00, METAL FABRICATIONS.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- K. Section 07 84 00, FIRESTOPPING.
- L. Section 07 92 00, JOINT SEALANTS.
- M. Section 09 91 00, PAINTING.
- N. Not used.
- O. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC.
- P. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- Q. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- R. Not used.
- S. Not used.
- T. Not used.
- U. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- V. Not used.
- W. Not used.
- X. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- Y. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- Z. Section 26 29 11, MOTOR CONTROLLERS.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA):

C. American Society of Mechanical Engineers (ASME):

B31.1-2018Power Piping

B31.9-2014Building Services Piping

ASME Boiler and Pressure Vessel Code:

BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications

D. American Society for Testing and Materials (ASTM):

A36/A36M-2014Standard Specification for Carbon Structural Steel

A575-1996(R2018)Standard Specification for Steel Bars, Carbon,
Merchant Quality, M-Grades

23 05 11 - 6

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- E. Association for Rubber Products Manufacturers (ARPM):
 - IP-20-2015Specifications for Drives Using Classical

V-Belts and Sheaves

IP-21-2016Specifications for Drives Using Double-V

(Hexagonal) Belts

IP-24-2016Specifications for Drives Using Synchronous

Belts

IP-27-2015Specifications for Drives Using Curvilinear

Toothed Synchronous Belts

- F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.:
 - SP-58-2018Pipe Hangers and Supports-Materials, Design,

 Manufacture, Selection, Application, and

 Installation
 - SP-127-2014aBracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application
- G. Military Specifications (MIL):
 - MIL-P-21035B-2013Paint High Zinc Dust Content, Galvanizing
 Repair (Metric)
- H. National Fire Protection Association (NFPA):

70-2017National Electrical Code (NEC)

101-2018Life Safety Code

I. Department of Veterans Affairs (VA):

PG-18-10-2016Physical Security and Resiliency Design Manual

1.5 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet

contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together.

 Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Not used.
- I. Not used.
- J. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of

not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.

- 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
- a. Mechanical equipment rooms.
- b. Not used.
- c. Hangers, inserts, supports, and bracing.
- d. Pipe sleeves.
- e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- K. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.

- L. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- M. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- N. Provide copies of approved HVAC equipment submittals to the TAB Subcontractor.
- O. Not used.
- P. Not used.

1.6 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

C. Equipment Vibration Tolerance:

- 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
- 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer workstation, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required, they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).

- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed,

 Contractor shall submit a certificate certifying that welders comply
 with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.

- H. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
 - 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
 - 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.7 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
- 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or waterproof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
- 3. Repair damaged equipment in first class, new operating condition and appearance; or replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- 4. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- 6. Protect plastic piping and tanks from ultraviolet light (sunlight).

B. Cleanliness of Piping and Equipment Systems:

- 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
- 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.8 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

 Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
 - As-built drawings are to be provided, with a copy of them on AutoCAD version provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
 - 3. As-built drawings are to be provided, with a copy of them in three-dimensional Building Information Modeling (BIM) software version provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.9 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The

phasing plan shall be detailed enough to provide milestones in the process that can be verified.

- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made, and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- G. Not used.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave.

 Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed, and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts.
 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished, and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation

of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e., air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Not used.
- B. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- C. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.

- D. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.
- E. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- F. Valve Tags and Lists:
 - HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic-coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

G. Ceiling Grid Labels:

- 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
- 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Not used.
- F. Not used.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- H. Not used.
- I. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

- J. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

K. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
- a. Standard clevis hanger: Type 1; provide locknut.
- b. Riser clamps: Type 8.
- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic-coated riser clamps.

- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
- a. Provide eye rod or Type 17 eye nut near the upper attachment.
- b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- c. Piping with Vertical Expansion and Contraction:
 - 1) Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - 2) Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- 4. Not used.

L. Pre-insulated Calcium Silicate Shields:

- 1. Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
- a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
- b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig)

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.

- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- M. Not used.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.

- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

- 1. Cut holes through concrete and masonry by rotary core drill.

 Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

H. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Not used.
- N. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).
- O. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed, and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150 mm (6 inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
- 4. Not used.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation.

 Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Not used.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.

- 2. The following material and equipment shall not be painted:
- a. Motors, controllers, control switches, and safety switches.
- b. Control and interlock devices.
- c. Regulators.
- d. Pressure reducing valves.
- e. Control valves and thermostatic elements.
- f. Lubrication devices and grease fittings.
- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gauges and thermometers.
- j. Glass.
- k. Nameplates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
- a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
- b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.

- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Not used.
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Not used.

3.13 NOT USED.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Not used.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Not used.
- E. Not used.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Not used.
- H. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- I. Section 26 24 19, MOTOR CONTROL CENTERS.
- J. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):
 9-2015Load Ratings and Fatigue Life for Ball Bearings
 11-2014Load Ratings and Fatigue Life for Roller
 Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning
 Engineers (ASHRAE):
 - 90.1-2013 Energy Efficient Design of New Buildings Except
 Low-Rise Residential Buildings
- D. Institute of Electrical and Electronics Engineers (IEEE):
 - 112-2017Standard Test Procedure for Polyphase Induction

 Motors and Generators
 - 841-2009IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty,

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

Totally Enclosed Fan-Cooled (TEFC) Squirrel
Cage Induction Motors--Up to and Including 370
kW (500 hp)

E. National Electrical Manufacturers Association (NEMA):

MG 1-2019Motors and Generators

MG 2-2014Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

Motors and Generators

250-2014 Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA):

70-2014National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.

- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Not used.
- I. Not used.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

 Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.

- 2. Not used.
- 3. Not used.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6~kW (100 hp), connected to 240-volt or 480-volt systems: 208-230/460~volts, dual connection.
 - c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, $74.6~\mathrm{kW}$ (100 hp) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746~W~(1~hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.

J. Motor Enclosures:

- 1. Shall be the NEMA types as specified and/or shown in the Contract Documents.
- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

K. Electrical Design Requirements:

- 1. Motors shall be continuous duty.
- 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
- 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
- 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
- 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
- 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.

L. Mechanical Design Requirements:

1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating

Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.

- 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
- 3. Grease lubricated bearings shall be designed for electric motor use.

 Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6. Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.

M. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.

- c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

	Premium I		ies			Efficienc					
O	pen Drip-	-Proof		Totally Enclosed Fan-Cooled (TEFC)							
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM				
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%				
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%				
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%				
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%				
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%				
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%				
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%				
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%				
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%				
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%				
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%				

29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polypl Average f	hase Operull load		ncy	Capacitor-s capacitor- (Average f	start ir	nduction ors	run
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	4 poles	2 poles	
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 NOT USED.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for onehours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Not used.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, and vibration control techniques to parts including, fans, and motors.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Audio Speech Pathology	25
Audio Suites	25
Auditoriums, Theaters	35-40
Bathrooms and Toilet Rooms	40
Chapels	35
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors (Public)	40
Dining Rooms, Food Services/ Serving	40
Examination Rooms	35
Gymnasiums	50
Kitchens	50

Laboratories (With Fume Hoods)	45 to 55
Laundries	50
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Operating Rooms	40
Patient Rooms	35
Phono/Cardiology	25
Recreation Rooms	40-45
Shops	50
SPD (Decontamination and Clean Preparation)	45
Therapeutic Pools	45
Treatment Rooms	35
Warehouse	50
X-Ray and General Work Rooms	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Not used.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm

per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Not used.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Not used.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):
 - Handbook 2017Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):
 - A123/A123M-2017Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

 A307-2016Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

 D2240-05(2010)Standard Test Method for Rubber Property -

D. Manufacturers Standardization (MSS):

Durometer Hardness

- SP-58-2018Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):

 ASCE 7-2017Minimum Design Loads for Buildings and Other

 Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):
 IBC 2018International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2016Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition, provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 NOT USED.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
 - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. // Isolators shall have a minimum seismic rating of one G. //
 - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
 - 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers

- and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15-degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15-degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
 - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed '4' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel.
- C. Snubbers: Each spring mounted base shall have a minimum of four all-directional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.

D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Not used.
- D. Not used.

2.5 NOT USED.

2.6 NOT USED.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive

- rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 NOT USED.

- - - E N D - - -

Version 02-01-20

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPN	MENT	C	N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
		BASE TYPE	ISOL TYPE	MIN DEFL												
REFRIGER	RATION M	ACHIN	IES													
ABSORPTIO	N		D	0.3		SP	0.8		SP	1.5		SP	1.5		SP	2.0
PACKAGED	HERMETIC		D	0.3		SP	0.8		SP	1.5		SP	1.5	R	SP	2.5
OPEN CENT	RIFUGAL	В	D	0.3	В	SP	0.8		SP	1.5	В	SP	1.5	В	SP	3.5
RECIPROCA	TING:															
ALL			D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
COMPRESS UP THROUGH		VACU	D, L,	JMPS		D,L,	0.8		D,L,	1.5	l	D, L,	1.5	l	D,L,	T
НР	, _		W			W			W W			W			₩ ₩	
2 HP AND O	VER:															
500 - 750) RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM &	OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
PUMPS																
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0

EQUIP	MENT		N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT FLOOR SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL									
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50			NA
	26 HP THRU 30 HP					S	1.0		S	1.50		S	2.50			NA
	UP TO 10 HP					D,L,			D,L, W			D,L,			D,L,	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
ABOVE OCCU	PIED AREA	S:														
5 HP & OV	/ER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0
CENTRIFU		IS														
UP TO 200) RPM	В	N	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300) RPM	В	N	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500) RPM	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM 8	v OVER	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5

EQUIPMENT	C	N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL												
60 HP & OVER:	•														•
UP TO 300 RPM	В	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5	I	S	3.5
301 - 500 RPM	В	S	2.0	I	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5
501 RPM & OVER	В	S	1.0	I	S	2.0	I	S	2.0	I	S	2.5	I	S	2.5
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER					SP	0.75		SP	0.75		SP	1.5		SP	2.5
UP TO 25 HP	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
30 THRU 100 HP	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
125 HP & OVER	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
AIR HANDLING UNIT P	ACKAGES	3													
SUSPENDED:															
UP THRU 5 HP					Н	1.0									
7-1/2 HP & OVER:			l .			l .	•				l .				
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0

EQUIPMENT	C	N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL												
FLOOR MOUNTED:															
UP THRU 5 HP		D			S	1.0									
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
 - 9. Document critical paths of flow on reports.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. TABB: Testing Adjusting and Balancing Bureau
- 6. SMACNA: Sheet Metal Contractors National Association
- 7. Hydronic Systems: Includes chilled water, condenser water, heating hot water and glycol-water systems.
- 8. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 9. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Not used.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- E. Section 23 07 11, HVAC, INSULATION.
- F. Not used.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 31 00, HVAC DUCTS AND CASINGS.
- G. Not used.
- I. Section 23 64 00, PACKAGED WATER CHILLERS.
- J. Not used.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses

subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems

and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. TAB Criteria:

- 1. One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Exhaust hoods/cabinets: 0 percent to plus 10 percent.
 - d. Minimum outside air: 0 percent to plus 10 percent.
 - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - f. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - g. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - h. Chilled water coils: Minus O percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) and one hydronic system (pumps and three coils) as follows: a. When field TAB work begins.

23 05 93 - 4

b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC, NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days for conventional design projects and within 60 days for design-build projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
 - 7. Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

C. Associated Air Balance Council (AABC):

 7^{th} Edition 2016AABC National Standards for Total System Balance

D. National Environmental Balancing Bureau (NEBB):

9th Edition 2019Procedural Standards for Testing, Adjusting,
Balancing of Environmental Systems

 $3^{\rm rd}$ Edition 2015Procedural Standards for the Measurement of Sound and Vibration

 $2^{\rm nd}$ Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide Current Edition

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report

individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
 - C. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed.
 Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.

- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid, and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 - 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100% open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre-construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 14 days' time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC

- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under all operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - 1. Not used.
 - 2. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Not used.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in rooms, approximately three percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
 - 2. Not used.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 10 meters (30 feet) 13 meters (40 feet) 16 meters (50 feet) for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), as in Section 23 65 00, COOLING TOWERS, measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 NOT USED.

3.14 CRITICAL FLOW PATH

A. Provide a documented critical path for all fluid flows. There shall be at least one terminal device that can be traced back to the fan or pump where there is no damper or valves that are less than 100% open.

- - E N D - - -

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Not used.
 - 3. Not used.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air-conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F) and piping media and equipment 32 to 230 degrees C (90 to 450 degrees F).
 - 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. Not used.
- 14. Not used.
- 15. Not used.
- 16. Not used.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. Not used.
- 20. Not used.
- 21. Not used.
- 22. Not used.
- 23. Not used.
- 24. Not used.
- 25. Not used.
- 26. Not used.
- 27. Not used.
- 28. Not used.
- 29. Not used.
- 30. Not used.
- 31. Not used.
- 32. Not used.
- 33. Not used.
- 34. Not used.
- 35. Not used.
- 36. CH: Chilled water supply.: Hot water.
- 37. CHR: Chilled water return.
- 38. Not used.
- 39. Not used.
- 40. Not used.

41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Not used.
- C. Not used.
 - D. Section 07 84 00, FIRESTOPPING.
- E. Not used.
 - F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Not used.
 - H. Section 23 21 13, HYDRONIC PIPING.
 - I. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- J. Not used.
- K. Not used.
- L. Not used.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See <u>4.2.4.2.</u>)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested,

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

- (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
- (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5 * Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.2 Not used.
 - 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
 - 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
 - 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
 - (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2) - 1999Plastic Sheet (Sheeting): Plastic Strip; Poly

(Vinyl Chloride) and Poly (Vinyl Chloride
Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1) - 2016 Adhesive, Flexible Unicellular-Plastic
Thermal Insulation

MIL-C-19565C (1) - 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread,
Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99 2014Standard Specification for Stainless and
Heat-Resisting Chromium-Nickel Steel Plate,
Sheet, and Strip

B209-2014Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

23 07 11 - 6

C411-2019	
	Performance of High-Temperature Thermal
	Insulation
C449-2019	.Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C533-2017	.Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534-2017	.Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-2017	.Standard Specification for Mineral Fiber pipe
	Insulation
C552-07	.Standard Specification for Cellular Glass
	Thermal Insulation
C553-2015	.Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C585-2016	.Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-2014	.Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126- 2019	.Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136- 2017	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a 2017	.Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-2014	.Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-2007	.Standard Test Method for Fire Tests of Building
	Construction and Materials

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

E136-2019	Stan	dard	Test	Metho	ods :	for	Beha	vior	of	Mate	rials	
=	in a	Vert	tical	Tube	Fur	nace	at	750	degr	ees	С	
	(138	80 F)										

Ε.	National	Fire	Protection	Association	(NFPA):
----	----------	------	------------	-------------	---------

90A-2018	Standard for the Installation of Air
	Conditioning and Ventilating Systems
96-2018	Standards for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
101-2018	Life Safety Code
251-2014	Standard methods of Tests of Fire Endurance of
	Building Construction Materials
255-2006	Standard Method of tests of Surface Burning
	Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

723-2018	UL	Standard	for	Safe	ety Test	for	Surface	Burning
	Cha	aracterist	cics	of B	Building	Mate	erials w	ith
	Rev	vision of	09/0	8 (

G. Manufacturer's Standardization Society of the Valve and Fitting
Industry (MSS):

SP58-2018Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m 3 (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m 3 (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all-service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k=0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m 3 (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300-degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k=0.039~(0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 NOT USED.

2.8 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics						
ITEMS	TYPE I	TYPE II				
Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)				
Density (dry), Kg/m³ (lb/ ft3)	232 (14.5)	288 (18)				
Thermal conductivity:						
Min W/ m K (Btu in/h ft^2 degrees F)@	0.059	0.078				
mean temperature of 93 degrees C	(0.41)	(0.540)				
(200 degrees F)						
Surface burning characteristics:						
Flame spread Index, Maximum	0	0				
Smoke Density index, Maximum	0	0				

2.9 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork The vapor barrier jacket

shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weatherproof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Not used.

2.10 NOT USED.

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessor	ries Material (Insert Blocks)
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	150 (6) long

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

- B. Warm or hot pipe supports: Premolded pipe insulation (180-degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- C. Not used.

2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.
 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full-length section will fit.
- C. Not used.

- D. Insulation materials shall be installed in a first-class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Insulate steam traps.
 - I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Not used.
 - 5. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

- J. Not used.
 - 2. Not used.
 - 3. Equipment:
 - a. Not used.
 - b. Not used.
 - c. Not used.
 - d. Not used.
 - e. Not used.
 - f. Not used.
 - g. Not used.
 - h. Not used.
 - i. Not used.
 - j. Not used.
 - k. Not used.
 - 1. All nameplates (NI)
 - 4. Specialties:
 - a. Not used.
 - b. Control valves-water and steam (NI)
 - c. Not used.
 - d. Not used.
 - e. Strainers under 65 mm (2-1/2 inch) pipe size (RJ)
 - f. Expansion bellows (RJ)
 - g. Flexible connectors (RJ)
 - h. Not used.
 - K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
 - L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
 - M. Firestop Pipe and Duct insulation:

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
- 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(linch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- O. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids below ambient air temperature.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen, and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling, or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. Not used.
- c. Not used.
- d. Not used.
- 3. Exposed, unlined ductwork and equipment and duct work exposed to outdoor weather:
 - a. Not used.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Supply air duct in the warehouse and in the laundry: 25 mm (one inch) thick insulation faced with ASJ.
- 5. Not used.
- 6. Not used.
- 7. Not used.

B. Flexible Mineral Fiber Blanket:

1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.

- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation, insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. Not used.
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - c. Not used.
 - d. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- 6. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.

- b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - 6. Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
 - 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.

E. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Not used.
- 3. Not used.
- 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.

F. Polyisocyanurate Closed-Cell Rigid Insulation:

- 1. Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300-degree F).
- 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
- 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).
- 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
- 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.

- 7. For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Not used.
- 10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 - d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- H. Not used.
- I. Not used.

3.3 NOT USED.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

)

)

- 3.4 NOT USED.
- 3.5 NOT USED.
- 3.6 NOT USED.
- 3.7 NOT USED.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)						
		Nominal	Pipe Size	Millimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above	
	Insulation Wall Thickness Millimeters (Inches)					
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)	

	1				02-01-20
93-260 degrees C	Calcium	100 (4)	125 (5)	150 (6)	150 (6)
(200-500 degrees F)	Silicate				
(HPS, HPR)					
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
piping from PRV Safety Valves, Condensate receivers and flash tanks)					
100-121 degrees C (212-250 degrees F)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)					
38-94 degrees C (100-200 degrees F)	Mineral Fiber (Above ground	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(LPR, PC, HWH, HWHR, GH and GHR)	piping only)				
38-99 degrees C	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(100-211 degrees F)	rilenoiic roam	(1.5)			
(LPR, PC, HWH, HWHR, GH and GHR)					
39-99 degrees C (100-211 degrees F)	Polyiso- cyanurate	38 (1.5)	38 (1.5)		
(LPR, PC, HWH, HWHR,	Closed-Cell Rigid	(1.5)			
GH and GHR)	(Exterior Locations only)				
38-94 degrees C	Flexible	38	38 (1.5)		
(100-200 degrees F)	Elastomeric Cellular	(1.5)			
(LPR, PC, HWH, HWHR, GH and GHR)	Thermal (Above ground piping only)				
4-16 degrees C	Rigid Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Phenolic Foam	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Cellular Glass	50	50 (2.0)	75 (3.0)	75 (3.0)
(40-60 degrees F)	Closed-Cell	(2.0)			

				VCIBIOI	02-01-20
(CH and CHR within chiller room and pipe chase and underground)					
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Cellular Glass Closed-Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)	Polyiso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. General Contractor shall provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, configuration/setup hardware and software, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, all configuration and setup software and hardware devices, and an Engineering Control Center. Provide a remote user using a standard HTML 5 web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. All new building controllers shall be native BACnet. All new BACNet workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new BACNet workstations, controllers, devices and components shall be accessible using a HTML5 Web browser interface. Browsers shall not require the use of an extension or add on software in order to access aforementioned workstations, controllers, devices, and components.
 - a. If used, gateways shall be BTL listed.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

Warranty, specified services and any other items required for a complete and fully functional Controls System.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall be an extension of the existing BAS.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractor's formal acknowledgements in writing prior to submission the installation of the products. These products include but are not limited to the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractor's formal acknowledgements in writing prior to submission the procurement of the products. These products include but are not limited to the following:
 - 1. Not used. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. These products include but are not limited to the following:

- Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
- 2. Not used.
- 3. Not used.
- 4. Not used.
- 5. Not used.
- 6. Not used.
- 7. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 8. The following systems have limited control (as individually noted below) from the ECC: The following four
 - a. Constant temperature rooms: temperature out of acceptable range and status alarms.
 - b. Process and food service coolers, refrigerators, and freezers: in patient nutrition kitchens, blood banks, mortuaries, and pharmacies: high temperature, trending and status alarms.
 - c. Medical gas systems (if not bottled at point of use): low pressure and status alarms.
 - d. Not used.
 - e. Not used.
 - f. Not used.
 - g. Not used.
 - h. Not used.
 - i. Not used.
 - j. Not used.
 - k. Not used.
 - 1. Not used.
 - m. Not used.
 - n. Not used.
 - o. Not used.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low	Line	
			Voltage	Power	
			Wiring		
					ı

Work/Itom/Stratem	Furnish	Install	Low Line	
Work/Item/System	rurnisn	INSTALL	Voltage Wiring	Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
	23	23	N/A	26
	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
	23 09 23	23 09 23	23 09 23	26
	23	23	23 09 23	26
All control system nodes, equipment, housings,	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
	N/A	N/A	26	26
	23	23	23	N/A
	23	23	23	26
	23	23	23	N/A
	23	23	23	26
VFDs	23	26	23 09 23	26
	23	23 09 23	23 09 23	26
	23 09 23	23 09 23	23 09 23	26
	23 09 23	23 09 23	23 09 23	26

	Version 08-01-20					
Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power		
	23	23	26	26		
	23	23	23 09 23	N/A		
	23	23	26	26		
	23 09 23	23 09 23	23 09 23	26		
	23	23 09 23	23 09 23	26		
Fire Alarm shutdown relay interlock wiring	28	28	28	26		
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28		
	28	28	28	28		
	23 09 23	23 09 23	23 09 23	26		
	23 09 23	23 09 23	23 09 23	26		
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26		
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26		
	23	23	23 09 23	23 09 23		
	23	23	23 09 23	23 09 23		
	23	23	23 09 23	23 09 23		
	23	23	N/A	26		

- F. This facility's existing direct-digital control (DDC) system is manufactured by Siemens, and its ECC is located at. Contractor shall verify the existing system's top-end communications protocol. The existing system's ECC and controllers were installed in the year of 1989. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
 - 1. Not used.
 - 2. Not used.
 - a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have

complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.

- b. Not used.
- 2. Not used.
 - a. The performance requirement for the combined system: the combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
 - b. Not used.
- 4. Not used.
- G. Not used.

Item/Task	Section 23 09 23 contactor	Control system integrator	VA
ECC expansion		X	
ECC programming		X	
Devices, controllers, control panels and equipment	X		
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/binary), and reset schedule point	X		
Point mapping		X	
Network Programming	X		
ECC Graphics		X	
Controller programming and sequences	X		
Integrity of LAN communications			Χ
Electrical wiring	X		
Operator system training		X	
LAN connections to devices		·	Χ
LAN connections to ECC		-	Χ
IP addresses			Χ
Overall system verification (Cx)		X	
Controller and system verification	X		

- H. Not used.
- I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted in writing by the VA.

1.2 RELATED WORK

- A. Section 13 21 29, Constant Temperature Rooms.
- B. Not used.
- C. Section 23 21 13, Hydronic Piping.
- D. Section 23 22 13, Steam and Condensate Heating Piping.
- E. Section 23 31 00, HVAC Ducts and Casings.
- F. Not used.
- G. Not used.
- H. Not used.
- I. Not used.
- J. Not used.
- K. Section 23 73 00, Outdoor Central-Station Air-Handling Units.
- L. Not used.
- M. Not used.
- N. Not used.
- O. Not used.
- P. Not used.
- Q. Not used.
- R. Not used.
- S. Section 26 05 11, Requirements for Electrical Installations.
- T. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- U. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- V. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- W. Section 26 09 23, Lighting Controls.
- X. Section 26 22 21, Specialty Transformers.
- Z. Section 26 27 26, Wiring Devices.
- AA. Section 26 29 11, Motor Starters.
- BB. Section 26 32 13, Engine Generators.
- CC. Section 27 15 00, Communications Horizontal Cabling

DD. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks -as defined by ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may use different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

23 09 23 - 8

- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

 Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state component to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.

- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It uses twisted-pair wiring for relatively low speed and low cost communication.
- NN. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- OO. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- PP. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.

- QQ. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- RR. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. Operating system (OS): Software, which controls the execution of computer application programs.
- TT. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- UU. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- VV. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- WW. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- XX. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- YY. Repeater: A network component that connects two or more physical segments at the physical layer.
- ZZ. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- AAA. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- BBB. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4QUALITY ASSURANCE

- A. Criteria:
 - Single Source Responsibility of subcontractor: Either the DDC Contractor or the System Integrator shall obtain hardware and

software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The Integration subcontractor shall be responsible for the complete design, installation, integration, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.
- 4. The controls subcontractor shall have an in-place facility within 50miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
 - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process

value and output generated by this calculation at this same frequency.

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
	±5% of reading
	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	MRI, SPS, PHARMACY
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet to monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with online support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 8hours after the problem is reported.
- D. Controls subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 6. Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.

- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit ($\underline{\text{CCU}}$) and all control panels.
- 12. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, ECC, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.

- 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of

the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing.
- B. The Controllers used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65°C (-40 to 150°F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):
 - 135-2017BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

lem,	Virginia	100% Submitta Version 08-01-2
	B16.18-2018	.Cast Copper Alloy Solder Joint Pressure Fittings.
	B16.22-2018	.Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
D.	American Society of Test	ting Materials (ASTM):
		Standard Specification for Solder Metal Standard Specifications for Seamless Copper Water Tube
	B88M-2018	Standard Specification for Seamless Copper Water Tube (Metric)
	B280-2019	Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service
	D2737-2018	Standard Specification for Polyethylene (PE) Plastic Tubing
Ε.	2. Federal Communication Commission (FCC):	
	Rules and Regulations T:	itle 47 Chapter 1-2014 Part 15: Radio Frequency Devices.
F.	Institute of Electrical and Electronic Engineers (IEEE):	
	802.3-2018	Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications
G. National Fire Protection Association (NFPA):		n Association (NFPA):
	70-2017 90A-2018	National Electric Code Standard for Installation of Air-Conditioning and Ventilation Systems
Н.	Underwriter Laboratories	s Inc (UL):
	94-2013	.Tests for Flammability of Plastic Materials for Parts and Devices and Appliances
	486A/486B-2018	.Access Control System Units .Wire Connectors .Standard for Smoke Dampers
	016 0015	

PART 2 - PRODUCS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least **five** years after completion of this contract.

1076-2018Proprietary Burglar Alarm Units and Systems

916-2015Energy Management Equipment

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- 1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.

C. Network Architecture

- 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.

3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

D. Third Party Interfaces:

- 1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

E. Servers:

- 1. Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
- 2. Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar.
- These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.
 - 1. The Data link / physical layer protocol between the ECC and all B-BC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - 2. Not used.
 - 3. Not used.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Not used.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internet controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. Not used.
- F. Not used.
- 2.4 NOT USED. ENGINEERING CONTROL CENTER (ECC)
- 2.5 NOT USED.
- 2.6 NOT USED.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical

configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.

- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances

- 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP.
1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary

controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators,
 Operator Displays, and sensors shall conform to BACnet Device Profiles
 and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to
 those Device Profiles. Protocol Implementation Conformance Statements
 (PICSs), describing the BACnet capabilities of the Devices shall be
 published and available for the Devices through links in the BTL
 website
 - 1. BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile.

 The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SSs to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.

1. Communication.

- a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications.
- b. Each B-BC controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4-port unmanaged switch inside the B-BC control cabinet.
- 2. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- 6. Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- A. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.

- a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
- b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4.Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Linuxor Microsoft Windows.
 - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to

customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.

- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind-up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3) or a maximum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Not used.

- b. Economizer: This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
- c. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day

schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operator's defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.
- i. Not used.

2.10 SPECIAL CONTROLLERS

- A. Not used.
- B. Not used.
- C. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms, in the SPS area, Chemo compounding

rooms, and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space and display the value on its monitor. The sensor-controller shall meet the following as a minimum:

- 1. Operating range: -0.25 to +0.25 inches of water column
- 2. Resolution: 5 percent of reading
- 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
- 4. Analog output: 4-20 ma
- 5. Operating temperature range: 32°F-120°F

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral 4-20 mA transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling/heating coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. Temperature well shall be filled with a thermal compound compatible with installed sensor.
 - c. All space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and BACNet communication port. Match room thermostats. Provide a tooled-access cover.
 - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop.

 Do not provide in-space User set-point adjustment. Provide an

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.

- 2) Not used.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 mA.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. Continuous Output Signal: 4-20 mA
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 mA output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0-to-0.25-inch wg for Building static pressure range.
- D. Not used.
- Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier. E. Turbine Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC or 24 Volt DC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digital display, for wall or panel mounting.
 - 1. Performance characteristics:

- a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100° humidity.
- b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
- c. Nominal range (turn down ratio): 10 to 1.
- d. Preamplifier mounted on meter shall provide 4-20 mA, a divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.
- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per $^{\circ}\text{C}$ ($^{\circ}\text{F}$) temperature change.
- g. RFI effect flow meter shall not be affected by RFI.h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.

F. Steam Flow Sensor/Transmitter:

- Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.
 - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six-digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - 1) Ambient conditions, -20°C to 50°C ($0^{\circ}\text{F}-120^{\circ}\text{F}$), 0 95 percent non-condensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - 3) Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.

f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line and shall have an isolation valve installed between the sensor and pressure source.

G. Flow switches:

- 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self-powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and

test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:
 - 1. Nominal Impedance: 100-130 Ohms
 - 2. Twisted/shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
 - 3. Be plenum rated when required
 - 4. Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.
- E. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:
 - 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.

- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - 1. Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

- 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
- 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Not used.
 - 2. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 3. Not used.
 - 4. See and coordinate drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Not used.
- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Not used.
 - 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.

- b. Electronics Panel shall be A/C powered 120 VAC or 24 VAC and shall have the capability to transmit signals of 4-20 ma type or PWM type for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM or LPS and temperature in degrees F or degrees C. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal shall be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- a. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- b. All readings shall be in I.P. or S.I. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The required probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the design input pressure:
 - 1. Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major or main trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and Control Unit (CU) shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal or static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:

- 1. Systems shall consist of an air flow measuring station for each main supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
- 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

2.16 SAFETY

A. Provide hard-wired interlocked connections for such all-safety devices, such as freeze stats, smoke detectors, smoke dampers, and refrigerant leak detection devices. All safety devises shall be provided with additional dry contacts and shall be connected to the DDC system for monitoring and sequencing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plumb.

B. Electrical Wiring Installation:

- 1. All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
- 2. Install analog signal and communication cables in conduit and in accordance with Specification Division 27 - COMMINICATIONS. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, COMMINICATIONS STRUCTURED CABLING.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

coaxial cables in a radius less than ten times the cable outside

- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

C. Install Sensors and Controls:

- 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor unless otherwise noted on the plans or drawings.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Pressure Sensors:

- a. Install duct static pressure sensor tips facing directly downstream of airflow.
- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.

3. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 5pipe diameters up stream and 5pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.

D. Installation of network:

1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.

- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote-control units.
 - 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or COR on random samples of equipment as dictated by the COR. Should random sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety $_{\rm DM}$
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute(s). Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Not used.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Not used.

3.4 NOT USED.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in the operation and maintenance of the system.
- B. Not used.

3.6 CONSTRUCTION WASTE MANAGEMENT

- A. General: Comply with Contractor's Waste Management Plan and Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- B. To the greatest extent possible, separate reusable and recyclable products from contaminated waste and debris in accordance with the Contractor's Waste Management Plan. Place recyclable and reusable

VA Project 658-319 01-20-2022 100% Submittal Version 08-01-20

products in designated containers and protect from moisture and contamination.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
 - 3. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Not used.
- E. Not used.
- F. Not used.
- G. Not used.
- H. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- I. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- J. Section 23 07 11, HVAC INSULATION: Piping insulation.
- K. Not used.
- L. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- M. Not used.
- N. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- O. Not used.
- P. Not used.
- O. Not used.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

	, 9	Version 02-01-20
В.	American Society of Mech	
	B1.20.1-2013	Pipe Threads, General Purpose (Inch)
	B16.3-2016	Malleable Iron Threaded Fittings: Classes 150
		and 300
	B16.4-2016	Gray Iron Threaded Fittings: (Classes 125 and
		250)
	B16.5-2017	Pipe Flanges and Flanged Fittings: NPS 1/2
		through NPS 24 Metric/Inch Standard
	B16.9-2018	Factory Made Wrought Buttwelding Fittings
	B16.11-2016	Forged Fittings, Socket-Welding and Threaded
	B16.18-2018	Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16.22-2018	Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.24-2016	Cast Copper Alloy Pipe Flanges and Flanged
		Fittings: Classes 150, 300, 600, 900, 1500, and
		2500
	B16.39-2014	Malleable Iron Threaded Pipe Unions: Classes
		150, 250, and 300
	B16.42-2016	Ductile Iron Pipe Flanges and Flanged Fittings
	B31.9-2014	Building Services Piping
	B40.100-2013	Pressure Gauges and Gauge Attachments
	ASME Boiler and Pressure	Vessel Code:
	BPVC Section VIII-2015 .	Rules for Construction of Pressure Vessels
С.	American Society for Tes	ting and Materials (ASTM):
	A47/A47M-2018	Standard Specification for Ferritic Malleable
		Iron Castings
	A53/A53M-2018	Standard Specification for Pipe, Steel, Black
		and Hot-Dipped, Zinc-Coated, Welded and
		Seamless
	A106/A106M-2019	Standard Specification for Seamless Carbon
		Steel Pipe for High-Temperature Service
	A126-2004 (R2019)	Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A183-2014	Standard Specification for Carbon Steel Track
		Bolts and Nuts

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

	A216/A216M-2018	Version 02-01-2 .Standard Specification for Steel Castings,
		Carbon, Suitable for Fusion Welding, for High-
		Temperature Service
	A307-2016	.Standard Specification for Carbon Steel Bolts,
		Studs, and Threaded Rod 60,000 PSI Tensile
		Strength
	A536-1984 (R2019)	.Standard Specification for Ductile Iron
		Castings
	в62-2017	.Standard Specification for Composition Bronze
		or Ounce Metal Castings
	в88-2016	.Standard Specification for Seamless Copper
		Water Tube
	F439-2019	.Standard Specification for Chlorinated Poly
		(Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
		Schedule 80
	F441/F441M-2015	.Standard Specification for Chlorinated Poly
		(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
		40 and 80
D.	American Welding Societ	y (AWS):
	B2.1/B2.1M-2014	.Standard for Welding Procedure and Performance
		Specification
Ε.	Expansion Joint Manufac	turer's Association, Inc. (EJMA):
	EJMA 2017	.Expansion Joint Manufacturer's Association
		Standards, Tenth Edition
F.		zation Society (MSS) of the Valve and Fitting
	<pre>Industry, Inc.:</pre>	
	SP-67-2017	
	SP-70-2014	.Gray Iron Gate Valves, Flanged and Threaded
		Ends
	SP-71-2014	.Gray Iron Swing Check Valves, Flanged and
	00 0014	Threaded Ends
		.Bronze Gate, Globe, Angle, and Check Valves
	SP-85-2014	.Gray Iron Globe and Angle Valves, Flanged and
	CD 110 2014	Threaded Ends
	Sr-11U-2U14	.Ball Valves Threaded, Socket-Welding, Solder
		Joint, Grooved and Flared Ends

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

G. Tubular Exchanger Manufacturers Association (TEMA):
TEMA Standards20159th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment support. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
 - 16. Electric heat tracing systems.
 - 17. Not used.
- D. Not used.
- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Not used.
- J. Not used.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one-year old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures,

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
 - 2. Not used.
 - 3. Not used.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal

23 21 13-6

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Not used.
- B. Not used.
- C. Cooling Coil Condensate Drain Piping:
 - 1. From air handling units: Copper water tube, ASTM B88, Type M, or Schedule 40 PVC plastic piping.
 - 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Not used.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.

- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, $ASTM\ A307$, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: CPVC, Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2758 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.

- b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves:

1. Globe Valves:

- a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.

F. Check Valves:

- 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball style valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - 1. Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - 2. Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - 4. Not used.
- I. Not used.

2.9 NOT USED.

2.10 STRAINERS

- A. Y Type.
 - 1. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Not used.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipelines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipelines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints
 Manufacturers Association (EJMA) Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 345 kPa (50 psig).

23 21 13-12

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 4. Welded ends.
- 5. Design shall conform to standards of EJMA and ASME B31.9.
- 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
- 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.9.
 - 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - 1. Corrugated bellows, externally pressurized, stainless steel or bronze
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 2413 kPa (350 psig) maximum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, PTFE modified polyphenylene sulfide coated slide section, with welded or flanged ends, suitable for axial end movement to 75 mm (3 inch).
- G. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipeline to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

23 21 13-13

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Not used.
- B. Not used.
- C. Not used. Optional.
- D. Not used.
- E. Not used.
- F. Not used.
- G. Not used.
- H. Not used.
- I. Not used.
- J. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.
- K. Not used.

2.14 NOT USED.

2.15 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores,

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.

- B. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.17 THERMOMETERS

- A. Organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water: 0 to 38 degrees C (32 to 100 degrees F).
 - 2. Not used.

2.18 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.19 ELECTRICAL HEAT TRACING SYSTEMS

- A. Systems shall meet requirements of NFPA 70.
- B. Provide tracing for outdoor piping subject to freezing temperatures below 3.3 degrees C (38 degrees F) as follows:
 - 1. Not used.
 - 2. Not used.
 - Chilled water piping at units and all other areas exposed to the weather.
 - 4. Not used.
- C. Heat tracing shall be provided to the extent shown on the drawings (Floor plans and Elevations). Heat tracing shall extend below grade to below the defined frost line.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Self-regulation shall prevent overheating and burnouts even where the cable overlaps itself.
 - 1. Provide end seals at ends of circuits. Wire at the ends of the circuits is not to be tied together.
 - 2. Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following:
 - a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 4 watts per foot of pipe.
 - b. 100 mm (4 inch) pipe and larger 40 mm (1-1/2 inch) thick insulation: 8 watts per feet of pipe.

E. Electrical Heating Tracing Accessories:

- Power supply connection fitting and stainless-steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
- 2. 15 mm (1/2 inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
- 3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 15 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts ac, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1 degrees C (34 degrees F).
- 4. Signs: Manufacturer's standard (NFPA 70), stamped "ELECTRIC TRACED" located on the insulation jacket at 3 m (10 feet) intervals along the pipe on alternating sides.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space.

 Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 NOT USED.

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of Chemical Treatment for VA Salem.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided, and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system.

 Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- C. Cleaning: Circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 NOT USED.

3.8 ELECTRIC HEAT TRACING

- A. Install tracing as recommended by the manufacturer.
- B. Coordinate electrical connections.

3.9 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Not used.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.10 NOT USED.

3.11 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Not used.

- - - E N D - - -

23 21 13-21

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. Not used.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Not used.
- D. Not used.
- E. Section 09 91 00, PAINTING.
- F. Not used.
- G. Not used.
- H. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- I. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- J. Section 23 07 11, HVAC INSULATION.
- K. Not used.
- L. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Not used.
- N. Not used.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B1.20.1-2013Pipe Threads, General Purpose (Inch)
B16.5-2013Pipe Flanges and Flanged Fittings: NPS 1/2
through NPS 24 Metric/Inch Standard
B16.9-2012Factory Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.42-2016Ductile Iron Pipe Flanges and Flanged Fittings:
Classes 150 and 300

B31.1-2018Power Piping

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

	Version 02-01
	B31.9-2014Building Services Piping
	B40.100-2013Pressure Gauges and Gauge Attachments
	ASME Boiler and Pressure Vessel Code (BPVC) -
	BPVC Section II-2019 Materials
	BPVC Section VIII-2019 Rules for Construction of Pressure Vessels,
	Division 1
	BPVC Section IX-2019Welding, Brazing, and Fusing Qualifications
C.	American Society for Testing and Materials (ASTM):
	A53/A53M-2017Standard Specification for Pipe, Steel, Black
	and Hot-Dipped, Zinc-Coated, Welded and
	Seamless
	A106/A106M-2019Standard Specification for Seamless Carbon
	Steel Pipe for High-Temperature Service
	A216/A216M-2019Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, for High-
	Temperature Service
	A285/A285M-2017Standard Specification for Pressure Vessel
	Plates, Carbon Steel, Low-and Intermediate-
	Tensile Strength
	A307-2019Standard Specification for Carbon Steel Bolts,
	Studs, and Threaded Rod 60,000 PSI Tensile
	Strength
	A516/A516M-2017Standard Specification for Pressure Vessel
	Plates, Carbon Steel, for Moderate- and Lower-
	Temperature Service
	A536-1984(R2017Standard Specification for Ductile Iron
	Castings
	B62-2017Standard Specification for Composition Bronze
	or Ounce Metal Castings
D.	American Welding Society (AWS):
	B2.1/B2.1M-2014Specification for Welding Procedure and
	Performance Qualifications
	Z49.1-2012Safety in Welding and Cutting and Allied
	Processes
Ε.	Manufacturers Standardization Society (MSS) of the Valve and Fitting
	Industry, Inc.:
	SP-80-2013Bronze Gate, Globe, Angle, and Check Valves

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

F. Military Specifications (Mil. Spec.):

MIL-S-901D-2017Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems

- G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- H. Tubular Exchanger Manufacturers Association (TEMA):
 TEMA Standards-20159th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10.Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications, and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
 - 14. Electric heat tracing systems.
 - 15. Not used.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
 - 2. Flash tanks.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation, and maintenance.
- H. Not used.
- I. Not used.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.

- 2. Comply with provisions in ASME B31.9.
- 3. Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

 Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- 2. Not used.
- 3. Not used.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite, or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.
 - 2. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe is joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.
 - b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - 1) Not used.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - b. 65 mm (2-1/2 inches) and larger:
 - 1) Not used.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze-faced disc (Teflon or composition facing permitted) and seat,

850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger:
 - 1) Not used.
 - 2) All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.

F. Swing Check Valves:

- 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45-degree swing disc.
- 2. 65 mm (2-1/2 inches) and Larger:
 - a. Not used.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. Not used.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipeline to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force

which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipelines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipelines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Not used.
 - c. Not used.
 - d. Not used.
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - 3. Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints
 Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 FLEXIBLE BALL JOINTS

A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members, while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.

B. Material:

- 1. Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.
- 2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - 1. Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 4. Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
- 5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.10 STEAM SYSTEM COMPONENTS

- A. Not used.
- B. Not used.
- C. Not used.
- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII.

 Capacities shall be certified by National Board of Boiler and Pressure

 Vessel Inspectors, maximum accumulation 10 percent. Provide lifting

 lever. Provide drip pan elbow where shown. Valve shall have stainless

 steel seats and trim.
- E. Not used.
- F. Not used.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: $1.7 \, \text{kPa} \, (1/4 \, \text{psig})$, based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.

VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Not used.
- I. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- J. Not used.
- K. Not used.
- L. Not used.
- M. Not used.
- N. Not used.
- O. Not used.

2.11 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.

 Pressure/temperature plug is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.14 ELECTRICAL HEAT TRACING SYSTEMS

- A. Systems shall meet requirements of NFPA 70.
- B. Provide tracing for outdoor piping subject to freezing temperatures below 3.3 degrees C (38 degrees F) as follows:
 - 1. Steam piping exposed to weather.
 - 2. Steam condensate exposed to weather.
 - 3. Not used.
- C. Heat tracing shall be provided to the extent shown on the drawings (Floor Plans and Elevations). Heat tracing shall extend below grade to below the defined frost line.
- D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Self-regulation shall prevent overheating and burnouts even where the cable overlaps itself.
 - 1. Provide end seals at ends of circuits. Wires at the ends of the circuits are not to be tied together.
 - 2. Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following:
 - a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 4 watts per foot of pipe.
 - b. 100 mm (4 inch) pipe and larger 40 mm (1-1/2 inch) thick insulation: 8 watts per feet of pipe.

- E. Electrical Heating Tracing Accessories:
 - Power supply connection fitting and stainless-steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
 - 2. 15 mm (1/2 inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
 - 3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 15 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts ac, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1 degrees C (34 degrees F).
 - 4. Signs: Manufacturer's standard (NEC Code), stamped "ELECTRIC TRACED" located on the insulation jacket at 3 m (10 feet) intervals along the pipe on alternating sides.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.

- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

A. The contractor is entirely responsible for the quality of the welding and shall:

- 1. Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
- 2. Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:

- 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.
- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.5 STEAM TRAP PIPING

- A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.
 - 1. On pipe size $1 \, \frac{1}{2}$ inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
 - 2. On pipe size below 1 $\frac{1}{2}$ inch raised face flanges or unions may be used to allow for removal of the traps.

3.6 NOT USED.

3.7 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.8 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.9 ELECTRIC HEAT TRACING

- A. Install tracing as recommended by the manufacturer.
- B. Coordinate electrical connections.

3.10 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. //The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.11 NOT USED.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Not used.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - 2. Not used.
 - 3. Not used.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - 2. Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Not used.
- D. Not used.
- E. Not used.
- F. Not used.
- G. Not used.
- H. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- I. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
- J. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- K. Section 23 07 11, HVAC, INSULATION: Duct Insulation.

- L. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- M. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.
- N. Not used.
- O. Not used.
- P. Not used.
- Q. Not used.
- R. Not used.
- S. Not used.
- T. Not used.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.

- c. Sealants and gaskets.
- d. Access sections.
- e. Installation instructions.
- 3. Volume dampers, back draft dampers.
- 4. Upper hanger attachments.
- 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
- 6. Sound attenuators, including pressure drop and acoustic performance.
- 7. Flexible ducts and clamps, with manufacturer's installation instructions.
- 8. Flexible connections.
- 9. Instrument test fittings.
- 10 Details and design analysis of alternate or optional duct systems.
- 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):

 ASCE7-2017Minimum Design Loads for Buildings and Other

 Structures
- C. American Society for Testing and Materials (ASTM):
 - A167-2009Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip

23 31 00 - 3

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

	C1071-2019Standard Specification for Fibrous Glass Duct	t
	Lining Insulation (Thermal and Sound Absorbing	ng
	Material)	
	E84-2014Standard Test Method for Surface Burning	
	Characteristics of Building Materials	
D.	National Fire Protection Association (NFPA):	
	90A-2018Standard for the Installation of Air	
	Conditioning and Ventilating Systems	
	96-2018Standard for Ventilation Control and Fire	
	Protection of Commercial Cooking Operations	
Ε.	Sheet Metal and Air Conditioning Contractors National Association	
	(SMACNA):	
	3rd Edition -2006HVAC Duct Construction Standards, Metal and	
	Flexible	
	2nd Edition -2012HVAC Air Duct Leakage Test Manual	
	6th Edition -2016Fibrous Glass Duct Construction Standards	
F.	Underwriters Laboratories, Inc. (UL):	
	181-2013Factory-Made Air Ducts and Air Connectors	
	555-2006Standard for Fire Dampers	
	555S-2014Standard for Smoke Dampers	

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Not used.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type

where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.

- 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
- 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Not used..
- E. Not used.
- F. Not used.
- G. Not used.
- H. Not used.
- I. Not used.
- J. Not used.
- K. Not used.
- L. Not used.
- M. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - 1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.

- 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.

 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- N. Not used.
- O. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 1350 mm (48 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- P. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- Q. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- R. Not used.

2.3 NOT USED.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:

- 1. Each duct mounted coil and humidifier.
- 2. Each fire damper (for link service), smoke damper and automatic control damper.
- 3. Each duct mounted smoke detector.
- 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2-hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream
- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).

- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3-inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or
 - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3-hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.9 FLEXIBLE AIR DUCT

A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m

- (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).

D. Application Criteria:

- 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
- 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
- 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.12 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 NOT USED.

2.15 DUCT MOUNTED THERMOMETER (AIR)

A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass

or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.

B. Thermometer Supports:

- 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
- 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.16 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.18 AIR FLOW CONTROL VALVES (AFCV)

Refer to Section 23 36 00 / 23 82 00, AIR TERMINAL UNITS / CONVECTION HEATING and COOLING UNITS.

2.19 NOT USED.

2.20 NOT USED.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and

accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported.

 Centerline radius of bends shall be not less than two duct diameters.

 Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket.

 Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief

ductwork), section by section, including fans, coils and filter sections.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of $145~\mathrm{km/h}$ ($90~\mathrm{mph}$).

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Not used.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 74 13, PACKAGED OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
- J. Not used.
- K. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 OUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261 and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturer's paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors, and drives.
 - 2. Centrifugal fans, motors, drives, accessories, and coatings.
 - a. In-line centrifugal fans.
 - b. Tubular Centrifugal Fans.
 - c. Up-blast kitchen hood exhaust fans.
 - d. Industrial fans.
 - e. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
 - 5. Centrifugal ceiling fans.
 - 6. Propeller fans.
 - 7. Packaged hood make-up air units.
 - 8. Vane axial fans.

- 9. Tube-axial fans.
- 10. Air curtain units.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016Standards Handbook 210-2016Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-2017Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually Fans C. American Society for Testing and Materials (ASTM): B117-2018Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-2008Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017Standard Test Methods for Measuring Adhesion by Tape Test G152-2013Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-2013Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

D. National Fire Protection Association (NF)	D.	National	Fire	Protection	Association	(NFPA) :
--	----	----------	------	------------	-------------	-------	-----

NFPA 96-2018Standard for Ventilation Control and Fire

Protection of Commercial Cooking Operations

E. National Sanitation Foundation (NSF):

37-2017Air Curtains for Entrance Ways in Food and Food
Service Establishments

F. Underwriters Laboratories, Inc. (UL):

181-2013Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

- 2.1 NOT USED.
- 2.2 NOT USED.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide selfacting back draft damper. Provide electric motor operated damper where indicated.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream. For kitchen hood exhaust applications, provide grease trough on base and threaded drain. The mounting height of the kitchen up-blast exhaust fan shall be in compliance with NFPA 96. (Provide vented curb extension if required to maintain required clearances.)

2.4 NOT USED.

2.5 NOT USED.

- 2.6 NOT USED.
- 2.7 NOT USED.PROPELLER FANS.
- 2.8 NOT USED.
- 2.9 NOT USED.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Not used.
- B. Not used.
- C. Not used.
 - D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Not used.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles, and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE):

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 02-01-20

	Version 02-01
	ASCE7-2017Minimum Design Loads for Buildings and Other
	Structures
D.	American Society for Testing and Materials (ASTM):
	A167-99 2009Standard Specification for Stainless and
	Heat-Resisting Chromium-Nickel Steel Plate,
	Sheet and Strip
	B209- 2014 Standard Specification for Aluminum and
	Aluminum-Alloy Sheet and Plate
Ε.	National Fire Protection Association (NFPA):
	90A-2018Standard for the Installation of Air
	Conditioning and Ventilating Systems
F.	Underwriters Laboratories, Inc. (UL):
	181-2013UL Standard for Safety Factory-Made Air Ducts

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.

and Connectors

- 1. Spun Intake/Exhaust Ventilators: Spun aluminum structural components shall be constructed of minimum 1.3 mm (16 Gauge) marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The spun aluminum baffle shall have a rolled bead for added strength.
- 2. Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 3.3 mm (8 Gauge) aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
- 3. Low Silhouette Intake/Exhaust Ventilator: The unit shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum hood shall be constructed of minimum 1.60 mm (14 Gauge) marine alloy aluminum, bolted to a minimum 3.25 mm (8 Gauge) aluminum support structure. The aluminum base shall have

continuously welded curb cap corners for maximum leak protection. Birdscreen constructed of 13 mm (1/2 inch) mesh shall be mounted across the relief opening.

- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 300 mm (12 inches) below and engage catch when damper is closed.
- D. See paragraph 3.3 for Intake/Exhaust exposed to high wind velocities.
- E. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for additional requirements.

2.2 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

A. Materials:

- Steel or aluminum Use aluminum air outlets and inlets for facilities located in high-humidity areas. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - 1. Not used.
 - 2. Not used.
 - 3. Not used.
 - 4. Not used.
 - 5. Not used.

- 6. Drum Louvers: Aluminum construction, drum louver, with pivoted blades and rotating drum to adjust length of throw and direction.
 - a. Register shall have integral; face adjustable, opposed blade damper constructed of heavy gauge steel. Damper shall be operable from the face of the register. Units shall be nozzle type with adjustable discharge pattern.
- 7. Not used.
- D. Not used.
- E. Not used.
- F. Not used.
- G. Not used.

2.4 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot-welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

2.5 NOT USED.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (90 mph) //or, in coastal areas, as defined in ASCE 7 Fig. 1.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 73 00 OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES,
- C. Not used.
- D. Section 09 91 00, PAINTING.
- E. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Not used.
- H. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- I. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- J. Section 23 07 11, HVAC INSULATION.
- K. Not used.
- L. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Section 23 21 13, HYDRONIC PIPING.
- N. Section 23 31 00, HVAC DUCTS and CASINGS.
- O. Section 23 34 00, HVAC FANS.
- P. Not used.
- Q. Not used.
- R. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR.
- B. Air Handling Units Certification

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

- 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for AHUs shall include fans, drives, motors, coils, , mixing box with outside/return air dampers, filter housings, , and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including

dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).

- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.

 Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

- 1. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
- 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-2001Standard for Forced-Circulation Air-Heating and Air-Cooling Coils
 - 430-2014Central Station Air Handling Units
- C. Air Movement and Control Association International, Inc. (AMCA): 210-2016Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
 - 170-2017Ventilation of Health Care Facilities
- E. American Society for Testing and Materials (ASTM):
 B117-2017Standard Practice for Operating Salt Spray
 (Fog) Apparatus

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

	vers	sion U3-U1-2
	D1654-2016Standard Test Method for Evaluation	of Painted
	or Coated Specimens Subjected to Cor	rosive
	Environments	
	D1735-2014Standard Practice for Testing Water	Resistance
	of Coatings Using Water Fog Apparatu	S
	D3359-2017Standard Test Methods for Measuring	Adhesion by
	Tape Test	
F.	. Military Specifications (Mil. Spec.):	
	P-21035B-2003Paint, High Zinc Dust Content, Galva	nizing
	Repair (Metric)	
G.	G. National Fire Protection Association (NFPA):	
	90A-2018Standard for Installation of Air Con	ditioning
	and Ventilating Systems, 2009	

H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

A. General:

- 1. AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. AHU section modules shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections

possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal airtight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8-inch WG) or higher.

B. Base:

1. Provide a heavy-duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide

supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.

- 2. AHUs shall be completely self-supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
- 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Table 2.1.C.2

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum
Insulation	Foam
Thickness	50 mm (2 inch) Minimum
Density	48 kg/m 3 (3.0 lb/ft 3) Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)
	Minimum

3. Not used.

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed

around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.

- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturer's standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb.) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8-inch WG).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations.

 Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.

D. Painted Exterior Finish: Galvanized steel (G90) exterior shall be mill prepared for painting by bonderizing and factory prepared for prime coat of paint by acid etch cleaning, as required, to assure paint adhesion. Provide factory applied prime coat and enamel finish coat of paint of color selected by owner. Paint corrosion resistance and adhesion shall have satisfactorily passed ASTM B117, D1654, D1735, D3359 and G23 for a minimum of 500 hours. Rating of failure at the scribe mark shall not be less than 6, average creepage not greater than 3 mm (1/8 inch). Rating of the inscribed area shall not be less than 10, no failure. Refer to Section 09 91 00, PAINTING.

E. Floor:

- 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs. per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- 2. Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- F. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

- 1. An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- 3. Installation, including frame, shall be designed and sealed to prevent blow-by.
- G. Not used.
- H. Not used.
- I. Plenum Fans Single and/or Multiple Fans in an Array:
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - 2. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.

5. Fan Accessories

- a. Fan Isolation: Provide an actuator-controlled damper to isolate the fan not in operation due to failure.
- b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- J. Fan Motor, Drive, and Mounting Assembly (Plenum Fans):
 - Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- K. Not used.
- L. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG) Electronic operators shall be furnished and mounted

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- M. Not used.
- N. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- O. Not used.
- P. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings for additional coil requirements.
 - 1. Not used.
 - 2. Not used.
 - 3. Not used.
- 4. Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. Electric damper operators shall be furnished and mounted by the AHU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. //
- 5. Not used.
- O. Not used.

- R. Not used.
- S. Not used.
- T. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt one phase connection at junction box.
 - 2. Install compatible 100-watt bulb in each light fixture.
 - 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Not used.
 - D. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
 - E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 03-01-20

F. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated, and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 NOT USED.

- - - E N D - - -

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC.

 Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing those materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by who's labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.

- 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer and witnessed by the

contractor. In addition, the following requirements shall be complied with:

- 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.

5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work.
 Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment,

barriers to be installed, safety equipment to be used, and exit pathways.

- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system

shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words
 "MAINTENANCE AND OPERATION MANUAL," the name and location of the
 system, material, equipment, building, name of Contractor, and

contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.

- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.

- 4. Duct sealing compound.
- 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed, and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.

C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

26 05 11 - 11

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

- 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- designation only. B. American Society of Testing Material (ASTM): D2301-10Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 467-13Grounding and Bonding Equipment 486A-486B-13Wire Connectors 486C-13Splicing Wire Connectors 486D-15Sealed Wire Connector Systems 486E-15Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07 Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-12Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN.
- D. Color Code:
 - No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated or cadmium-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated or cadmium-plated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.

- 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
- 4. All conductors in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 CONTROL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.

B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect", and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE

 TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Medium-voltage circuit breaker switchgear.
- F. Section 26 23 13, GENERATOR PARALLELING CONTROLS: Generator paralleling controls.
- G. Section 26 13 16, MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES: Medium-voltage fusible interrupter switches.
- H. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- I. Not used.
- E. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- F. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.
 - 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

of a Ground System Part 1: Normal Measurements

D. National Fire Protection Association (NFPA):
70-17National Electrical Code (NEC)

70E-15National Electrical Safety Code

99-15Health Care Facilities

F.	Underwriters	Laboratories	Tnc	/TTT.)	
Ŀ.	Oliderwriters	Laboratories	, IIIC.	(Ш)	

44-14	Thermoset-Insulated Wires and Cables
83-14	Thermoplastic-Insulated Wires and Cables
467-13	Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN.

2.2 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated or cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated or cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated or cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated or cadmium-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

B. Transformers:

- Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.
 Provide a grounding electrode at the transformer.
- 2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.4 RACEWAY

A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through

which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.7 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.8 ACCEPTANCE CHECKS AND TESTS

C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- I. Section 31 20 00, EARTHWORK: Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

26 05 33 - 2

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

	Version UI-UI-18 FB2.10-13Selection and Installation Guidelines for
	Fittings for use with Non-Flexible Conduit or
	Tubing (Rigid Metal Conduit, Intermediate
	Metallic Conduit, and Electrical Metallic
	Tubing)
	FB2.20-14Selection and Installation Guidelines for
	Fittings for use with Flexible Electrical
	Conduit and Cable
	TC-2-13 Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
	TC-3-13PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
D.	National Fire Protection Association (NFPA):
	70-17National Electrical Code (NEC)
Ε.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-16Surface Metal Raceway and Fittings
	6-07 Electrical Rigid Metal Conduit - Steel
	50-15Enclosures for Electrical Equipment
	360-13Liquid-Tight Flexible Steel Conduit
	467-13Grounding and Bonding Equipment
	514A-13Metallic Outlet Boxes
	514B-12Conduit, Tubing, and Cable Fittings
	514C-14Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
	651-11Schedule 40 and 80 Rigid PVC Conduit and
	Fittings
	651A-11Type EB and A Rigid PVC Conduit and HDPE
	Conduit
	797-07Electrical Metallic Tubing
	1242-14Electrical Intermediate Metal Conduit - Steel
ART :	2 - PRODUCTS

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
- 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high-density polyethylene (PE).
- 8. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

blank cover plates having the same finishes as that of other electrical plates in the room.

- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - e. Indent-type connectors or couplings are prohibited.
 - f. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30-degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

accordance with UL 467 and the NEC tables for equipment grounding conductors.

d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm $(1.5 \times 1.5 \text{ inches})$, 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.

- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at $2.4\ \mathrm{M}$ (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure,

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

made up wrench tight. Do not make conduit connections to junction box covers

- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum $1.8\,$ M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require

expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.

- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm $(1.125\ inch)$ in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.

- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90-degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example, "SIG-FA JB No. 1."

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

26 05 33 - 13

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the new branch circuit breakers in the telecommunications room panelboards up to the new automatic transfer switch feeder breakers coordinated to 0.1 seconds.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- C. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- D. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study.
 Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.

- 2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): Commercial Buildings Coordination of Industrial and Commercial Power Systems Commercial Power Systems Analysis 1584-02Performing Arc-Flash Hazards Calculations 1584A-04Performing Arc-Flash Hazards Calculations -Amendment 1 1584B-11Performing Arc-Flash Hazards Calculations -Amendment 2 C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)

70E-18Standard for Electrical Safety in the Workplace 99-18Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.

- 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and $\ensuremath{\mathrm{X/R}}$ ratios.

D. Short-Circuit Study:

- The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
- 2. Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
- 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.

E. Coordination Study:

- 1. Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
- 2. The following specific information shall also be shown on the coordination curves:

- a. Device identification.
- b. Potential transformer and current transformer ratios.
- c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
- d. Applicable circuit breaker or protective relay characteristic curves.
- e. No-damage, melting, and clearing curves for fuses.
- f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.

F. Arc Flash Calculations and Analysis:

- 1. Arc flash warning labels shall comply with Section 26 05 11, REOUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 2. Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
- 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
- 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
- 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path
 to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

C. National Fire Protection Association (NFPA):

70-17National Electrical Code (NEC)
99-18Health Care Facilities

D. Underwriter's Laboratories, Inc. (UL):

467-13Grounding and Bonding Equipment

498-17Attachment Plugs and Receptacles

943-16Ground-Fault Circuit-Interrupters

1449-14Surge Protective Devices

1472-15Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be gray in color.
 - 2. Bodies of receptacles on the essential electrical system shall be red in color.
 - 3. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be gray in color unless otherwise specified or shown on the drawings.
 - 1. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 2. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings

aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.

- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- ${\rm H.}$ Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-18

---END---

26 27 26 - 6

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

98-16Enclosed and Dead-Front Switches 248 1-11Low Voltage Fuses

VA Project 658-319 01-20-2022 100% Submittal Version 01-01-17

489-13 Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches and shall be NEMA classified Heavy Duty ($\mbox{\scriptsize HD}$).

2.4 MOTOR RATED TOGGLE SWITCHES

A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.

B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

A. Shall be in accordance with NEMA FU 1.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication, and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 26: Section 26 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 26 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 26 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - 1. Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and

assistance in resolving technical problems at any time during warranty period.

- 2. Provide certified OEM sweep test tags from each cable reel to COR.
- 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- 4. Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
- 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
 - 3. Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
 - 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.

- 2) 20 AWG, minimum, Inside.
- d. Color Coding: Required, EIA industry standard.
- e. Bend Radius: 10 times cable outside diameter.
- f. Impedance: As required.
- g. Shield Coverage: As required by OEM specification.
- h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

- E. Distribution System Signal Wires and Cables:
 - 1. Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - 1. Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.

- a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
- b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
- 2. Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.
 - 3) Equipment Racks.
 - 4) Equipment Cabinets.
 - 5) Conduits.
 - 6) Ducts.
 - 7) Cable Trays.
 - 8) Power Panels.
 - 9) Connector Panels.
 - 10) Grounding Blocks.
 - b. Bond radio equipment to earth ground via internal building wiring, according to NEC.

- 2. Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 5e, 6.
 - 2) IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 5e, 6 and the size and type of cable used.
 - 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
 - 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.
 - b) Number of Terminals per Row: Minimum 4.

- c) Terminal Protector: Required for each used or unused
- d) Insulation Splicing: Required between each row of terminals.

b. Digital or High-Speed Data:

- 1) Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case-by-case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
- 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.

- c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
- d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Manholes:
 - 1. Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
 - 3. Fireproofing:
 - a. Install fireproofing where low voltage cables are installed in same maintenance holes with high voltage cables; also cover low voltage cables with arc proof and fireproof tape.
 - b. Use tape of same type used for high voltage cables, and apply tape in a single layer, one-half lapped or as recommended by manufacturer. Install tape with coated side towards the cable and extend minimum 25 mm (1 inch) into each duct.
 - c. Secure tape in place by a random wrap of glass cloth tape.
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - 2. Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - 6. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.

- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- 8. Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case-by-case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultraviolet protection and be waterproof (including all connections).
- 11. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
 - e. Remove unsightly wiring and cabling from view and discourage tampering and vandalism.
 - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two-hour fire barriers, with an approved fire retardant sealant.

D. AC Power:

 Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.

- 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- 2. Print lettering for voice and data circuits using laser printers; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- 4. Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.

- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- 6. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.

C. Fire alarm signals:

- 1. Building(s) shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.

1.2 SCOPE

A. New devices shown shall be an extension of an existing fire alarm system. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing devices may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.

F. Basic Performance:

- 1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
- Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
- 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72.

 Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
- 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.

- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

- 1. Prepare drawings using AutoCAD Release 14 software and include all contractor's information. Layering shall be by VA criteria as provided by the COR. Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all

circuits. Provide diagrams both on a per building and campus wide

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files using AutoCAD 2014 or later. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.

- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A printout of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A printout for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.

- D. Maintenance and testing shall be performed in accordance with NFPA 72.

 A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment.

 The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR or his authorized representative.

G. Emergency Service:

- 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.
- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2

through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-back hours is based on actual time spent on site and does not include travel time.

H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.

NFPA 90A.....Standard for the Installation of Air

Conditioning and Ventilating Systems, 2009

edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):

B. National Fire Protection Association (NFPA):

S3.41......Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 10-11

F. International Code Council, International Building Code (IBC), 2009 edition.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross-sectional area.
 - 3. All new conduits shall be 3/4-inch (19 mm) minimum.

B. Wire:

- 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
- 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

1. Each building shall reuse existing fire alarm control unit.

2.7 ALARM NOTIFICATION APPLIANCES

A. Bells:

- 1. Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
- 2. Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.
- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.

B. Speakers:

- 1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2-watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2-watt tap.
- 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

C. Strobes:

- 1. Xenon flash tube type minimum 15 candela in toilet rooms and 75 candelas in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

D. Fire Alarm Horns:

- 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

A. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector

shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.

6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports, and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.

3.2 TYPICAL OPERATION

- A. Activation of any smoke detector shall cause the following operations
 - 1. Operate the emergency voice communication system
 - 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meet all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition, the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose-leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the

Salem VA Medical Center Upgrade/Replace HVAC Phase III Salem, Virginia VA Project 658-319 01-20-2022 100% Submittal Version 10-11

- system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -